425 resultados para Asymmetric transport costs
Resumo:
Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.
Resumo:
The paper explores the way in which the life of concrete sleepers can be dramatically affected by two important factors, namely impact forces and fatigue cycles. Drawing on the very limited experimental and field data currently available about these two factors, the paper describes detailed simulations of sleepers in a heavy haul track in Queensland Australia over a period of 100 years. The simulation uses real wheel/rail impact force records from that track, together with data on static bending tests of similar sleepers and preliminary information on their impact vs static strength. The simulations suggest that despite successful performance over many decades, large unplanned replacement costs could be imminent, especially considering the increasingly demanding operational conditions sleepers have sustained over their life. The paper also discusses the key factors track owners need to consider in attempting to plan for these developments.
Resumo:
Light Transport Systems (LTS) (e.g lightpipes, fibre optics) can illuminate core areas within buildings with great potential for energy savings. However, they do not provide a clear connection to the outside like windows do, and their effects on people’s physiological and psychological health are not well understood. Furthermore, how people perceive LTS affects users’ acceptance of the device and its performance. The purpose of this research is to understand how occupants perceive and experience spaces illuminated by LTS. Two case studies of commercial buildings with LTS, located in Brisbane, Australia are assessed by qualitative (focus group interviews) and quantitative (measurement of daylight illuminances and luminance) methods. The data from interviews with occupants provide useful insight into the aspects of LTS design that are most relevant to positive perception of the luminous environment. Luminance measurements of the occupied spaces support the perception of the LTS reported by occupants: designs that create high contrast luminous environments are more likely to be perceived negatively.
Resumo:
Australia, road crash trauma costs the nation A$15 billion annually whilst the US estimates an economic impact of around US$ 230 billion on its network. Worldwide economic cost of road crashes is estimated to be around US$ 518 billion each year. Road accidents occur due to a number of factors including driver behaviour, geometric alignment, vehicle characteristics, environmental impacts, and the type and condition of the road surfacing. Skid resistance is considered one of the most important road surface characteristics because it has a direct effect on traffic safety. In 2005, Austroads (the Association of Australian and New Zealand Road Transport and Traffic Authorities) published a guideline for the management of skid resistance and Queensland Department of Main Roads (QDMR) developed a skid resistance management plan (SRMP). The current QDMR strategy is based on rationale analytical methodology supported by field inspection with related asset management decision tools. The Austroads’s guideline and QDMR's skid resistance management plan have prompted QDMR to review its skid resistance management practice. As a result, a joint research project involving QDMR, Queensland University of Technology (QUT) and the Corporative Research Centre for Integrated Engineering Asset Management (CRC CIEAM) was formed. The research project aims at investigating whether there is significant relationship between road crashes and skid resistance on Queensland’s road networks. If there is, the current skid resistance management practice of QDMR will be reviewed and appropriate skid resistance investigatory levels will be recommended. This paper presents analysis results in assessing the relationship between wet crashes and skid resistance on Queensland roads. Attributes considered in the analysis include surface types, annual average daily traffic (AADT), speed and seal age.
Resumo:
A schedule coordination problem involving two train services provided by different operators is modeled as an optimization of revenue intake. The coordination is achieved through the adjustment of commencement times of the train services by negotiation. The problem is subject to constraints regarding to passenger demands and idle costs of rolling-stocks from both operators. This paper models the operators as software agents having the flexibility to incorporate one of the two (and potentially more) proposed negotiation strategies. Empirical results show that agents employing different combination of strategies have significant impact on the quality of solution and negotiation time.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.
Resumo:
Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.
Resumo:
Around the world, particularly in North America and Australia, urban sprawl combined with low density suburban development has caused serious accessibility and mobility problems, especially for those who do not own a motor vehicle or have access to public transportation services. Sustainable urban and transportation development is seen crucial in solving transportation disadvantage problems in urban settlements. However, current urban and transportation models have not been adequately addressed unsustainable urban transportation problems that transportation disadvantaged groups overwhelmingly encounter, and the negative impacts on the disadvantaged have not been effectively considered. Transportation disadvantaged is a multi-dimensional problem that combines demographic, spatial and transportation service dimensions. Nevertheless, most transportation models focusing on transportation disadvantage only employ demographic and transportation service dimensions and do not take spatial dimension into account. This paper aims to investigate the link between sustainable urban and transportation development and spatial dimension of the transportation disadvantage problem. The paper, for that purpose, provides a thorough review of the literature and identifies a set of urban, development and policy characteristics to define spatial dimension of the transportation disadvantage problem. This paper presents an overview of these urban, development and policy characteristics that have significant relationships with sustainable urban and transportation development and travel inability, which are also useful in determining transportation disadvantaged populations.
Resumo:
Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.
Resumo:
Purpose–The aims of this paper are to demonstrate the application of Sen’s theory of well-being, the capability approach; to conceptualise the state of transportation disadvantage; and to underpin a theoretical sounds indicator selection process. Design/methodology/approach–This paper reviews and examines various measurement approaches of transportation disadvantage in order to select indicators and develop an innovative framework of urban transportation disadvantage. Originality/value–The paper provides further understanding of the state of transportation disadvantage from the capability approach perspective. In addition, building from this understanding, a validated and systematic framework is developed to select relevant indicators. Practical implications –The multi-indicator approach has a high tendency to double count for transportation disadvantage, increase the number of TDA population and only accounts each indicator for its individual effects. Instead, indicators that are identified based on a transportation disadvantage scenario will yield more accurate results. Keywords – transport disadvantage, the capability approach, accessibility, measuring urban transportation disadvantage, indicators selection Paper type – Academic Research Paper
Resumo:
In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.
Resumo:
Many economic, social and environmental sustainability problems associated with typical urban transportation systems have revealed the importance of three domains of action: vehicle, infrastructure and user. These domains need to be carefully reconsidered in search of a sustainable urban development path. Although intelligent transportation systems have contributed substantially to enhancing efficiency, safety and comfort of travel, questions related to users’ behaviours and preferences, which stimulate considerable environmental effects, still needed to be further examined. In this chapter, options for smart urban transportation infrastructure development and the technological means for achieving broader goals of sustainable communities and urban development are explored.
Resumo:
In an age when escalating fuel prices, global warming and world resource depletion are of great concern, sustainable transport practices promise to define a new way of mobility into the future. With its comparatively minimal negative environmental impacts, non reliance on fuels and positive health effects, the simple bicycle ofers significant benefits to humankind. These benefits are evident worldwide where bicycles are successfully endorsed through improved infrastructure, supporting policies, public education and management. In Australia, the national, state and locall governments are introducing measures to improve and support green transport. This is necessary as current bicycle infrastructure is not always sufficient and the longstanding conflict with motorized transport still exists. The aim for the future is to implement sustainable hard and soft bicycle infrastructure globally; the challenges of such a task can be illustrated by the city of Brisbane, Australia.
Resumo:
The Government of Indonesia (GoI) increasingly relies on the private sector financing to build and operate infrastructures through public private partnership (PPP) schemes. However, PPP does not automatically provide the solution for the financing scheme due to value for money (VFM) issues. The procurement authority must show whether a PPP proposal is the optimal solution that provides best VFM outcome. The paper presents a literature review of comparing quantitative VFM methodology for PPP infrastructure project procurement in Indonesia and Australia. Public Sector Comparator (PSC) is used to assess the potential project VFM quantitatively in Australia. In Indonesia, the PSC has not been applied, where the PPP procurement authority tends to utilize a common project evaluation method that ignores the issues of risk. Unlike the conventional price bid evaluation, the PSC enables a financial comparison including costs/gains and risks. Since the construction of PSC is primarily on risk management approach, it can facilitate risk negotiation processes between the involved parties. The study indicates that the quantitative VFM methodology of PSC is potentially applicable in Indonesia for water supply sector. Various supporting regulations are available that emphasize the importance of VFM and risk management in infrastructure investment. However, the study also reveals a number of challenges that need to be anticipated, such as the need of a more comprehensive PPP policy at both central and local government level, a more specific legal instrument for bidding evaluation method and the issue of institutional capacity development in PPP Units at the local level.
Resumo:
Adolescent injury is a significant health concern and can be a result of the adolescents engagement in transport-related behaviours. There is however significant planning and formative research needed to inform prevention programme design. This presentation reports on the development and evaluation of a curriculum programme that was shown to be effective in reducing transport-related risks and injuries. Early adolescents report injuries resulting from a number of transport-related behaviours including those associated with riding a bicycle, a motorcycle, and as a passenger (survey of 209 Year 9 students). In focus groups, students (n=30) were able to describe the context of transport risks and injuries. Such information provided evidence of the need for an intervention and ecologically valid data on which to base programme design including insights into the language, culture and development of adolescents and their experiences with transport risks. Additional information about teaching practices and implementation issues were explored in interviews with 13 teachers. A psychological theory was selected to operationalise the design of the programmes that drew on such preparatory data. The programme, Skills for Preventing Injury in Youth was evaluated with 197 participating and 137 control students (13–14 year olds). Results showed a significant difference between the intervention and control groups from baseline to 6-month follow-up in a number of transport-related risk behaviours and transport-related injuries. The programme thus demonstrated potential in reduce early adolescents transport risk behaviours and associated harm. Discussion will involve the implications of the development research process in designing road safety interventions.