638 resultados para Analytical models
Resumo:
Two studies were conducted to investigate empirical support for two models relating to the development of self-concepts and self-esteem in upper-primary school children. The first study investigated the social learning model by examining the relationship between mothers' and fathers' self-reported self-concepts and self-esteem and the self-reported self-concepts and self-esteem of their children. The second study investigated the symbolic interaction model by examining the relationship between children's perception of the frequency of positive and negative statements made by parents and their self-reported self-concepts and self-esteem. The results of these studies suggested that what parents say to their children and how they interact with them is more closely related to their children's self-perceptions than the role of modelling parental attitudes and behaviours. The findings highlight the benefits of parents talking positively to their children.
Resumo:
With increasingly complex engineering assets and tight economic requirements, asset reliability becomes more crucial in Engineering Asset Management (EAM). Improving the reliability of systems has always been a major aim of EAM. Reliability assessment using degradation data has become a significant approach to evaluate the reliability and safety of critical systems. Degradation data often provide more information than failure time data for assessing reliability and predicting the remnant life of systems. In general, degradation is the reduction in performance, reliability, and life span of assets. Many failure mechanisms can be traced to an underlying degradation process. Degradation phenomenon is a kind of stochastic process; therefore, it could be modelled in several approaches. Degradation modelling techniques have generated a great amount of research in reliability field. While degradation models play a significant role in reliability analysis, there are few review papers on that. This paper presents a review of the existing literature on commonly used degradation models in reliability analysis. The current research and developments in degradation models are reviewed and summarised in this paper. This study synthesises these models and classifies them in certain groups. Additionally, it attempts to identify the merits, limitations, and applications of each model. It provides potential applications of these degradation models in asset health and reliability prediction.
Resumo:
Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting Time-to-Failure (TTF) and the probability of failure in future time are essential. In traditional reliability models, the lifetime of assets is estimated using failure time data. However, in most real-life situations and industry applications, the lifetime of assets is influenced by different risk factors, which are called covariates. The fundamental notion in reliability theory is the failure time of a system and its covariates. These covariates change stochastically and may influence and/or indicate the failure time. Research shows that many statistical models have been developed to estimate the hazard of assets or individuals with covariates. An extensive amount of literature on hazard models with covariates (also termed covariate models), including theory and practical applications, has emerged. This paper is a state-of-the-art review of the existing literature on these covariate models in both the reliability and biomedical fields. One of the major purposes of this expository paper is to synthesise these models from both industrial reliability and biomedical fields and then contextually group them into non-parametric and semi-parametric models. Comments on their merits and limitations are also presented. Another main purpose of this paper is to comprehensively review and summarise the current research on the development of the covariate models so as to facilitate the application of more covariate modelling techniques into prognostics and asset health management.
Resumo:
This research examines how men react to male models in print advertisements. In two experiments, we show that the gender identity of men influences their responses to advertisements featuring a masculine, feminine, or androgynous male model. In addition, we explore the extent to which men feel they will be classified by others as similar to the model as a mechanism for these effects. Specifically, masculine men respond most favorably to masculine models and are negative toward feminine models. In contrast, feminine men prefer feminine models when their private self is salient. Yet in a collective context, they prefer masculine models.These experiments shed light on how gender identity and self-construal influence male evaluations and illustrate the social pressure on men to endorse traditional masculine portrayals. We also present implications for advertising practice.
Resumo:
In two experiments, we show that the beliefs women have about the controllability of their weight (i.e., weight locus of control) influences their responses to advertisements featuring a larger-sized female model or a slim female model. Further, we examine self-referencing as a mechanism for these effects. Specifically, people who believe they can control their weight (“internals”), respond most favorably to slim models in advertising, and this favorable response is mediated by self-referencing. In contrast, people who feel powerless about their weight (“externals”), self-reference larger-sized models, but only prefer larger-sized models when the advertisement is for a non-fattening product. For fattening products, they exhibit a similar preference for larger-sized models and slim models. Together, these experiments shed light on the effect of model body size and the role of weight locus of control in influencing consumer attitudes.
Resumo:
A configurable process model provides a consolidated view of a family of business processes. It promotes the reuse of proven practices by providing analysts with a generic modelling artifact from which to derive individual process models. Unfortunately, the scope of existing notations for configurable process modelling is restricted, thus hindering their applicability. Specifically, these notations focus on capturing tasks and control-flow dependencies, neglecting equally important ingredients of business processes such as data and resources. This research fills this gap by proposing a configurable process modelling notation incorporating features for capturing resources, data and physical objects involved in the performance of tasks. The proposal has been implemented in a toolset that assists analysts during the configuration phase and guarantees the correctness of the resulting process models. The approach has been validated by means of a case study from the film industry.
Resumo:
Advertising research has generally not gone beyond offering support for a positive effect where ethnic models in advertising are viewed by consumers of the same ethnicity. This study offers an explanation behind this phenomenon that can be useful to marketers using self-reference theory. Our experiment reveals a strong self-referencing effect for ethnic minority individuals. Specifically, Asian subjects (the ethnic minority group) self-referenced ads with Asian models more than white subjects (the ethnic majority group). However, this result was not evident for white subjects. Implications for academics and advertisers are discussed.
Resumo:
Australia needs highly skilled workers to sustain a healthy economy. Current employment-based training models have limitations in meeting the demands for highly skilled labour supply. The research explored current and emerging models of employment-based training to propose more effective models at higher VET qualifications that can maintain a balance between institution and work-based learning.
Resumo:
Cognitive modelling of phenomena in clinical practice allows the operationalisation of otherwise diffuse descriptive terms such as craving or flashbacks. This supports the empirical investigation of the clinical phenomena and the development of targeted treatment interventions. This paper focuses on the cognitive processes underpinning craving, which is recognised as a motivating experience in substance dependence. We use a high-level cognitive architecture, Interacting Cognitive Subsystems (ICS), to compare two theories of craving: Tiffany's theory, centred on the control of automated action schemata, and our own Elaborated Intrusion theory of craving. Data from a questionnaire study of the subjective aspects of everyday desires experienced by a large non-clinical population are presented. Both the data and the high-level modelling support the central claim of the Elaborated Intrusion theory that imagery is a key element of craving, providing the subjective experience and mediating much of the associated disruption of concurrent cognition.
Resumo:
This paper is a deductive theoretical enquiry into the flow of effects from the geometry of price bubbles/busts, to price indices, to pricing behaviours of sellers and buyers, and back to price bubbles/busts. The intent of the analysis is to suggest analytical approaches to identify the presence, maturity, and/or sustainability of a price bubble. We present a pricing model to emulate market behaviour, including numeric examples and charts of the interaction of supply and demand. The model extends into dynamic market solutions myopic (single- and multi-period) backward looking rational expectations to demonstrate how buyers and sellers interact to affect supply and demand and to show how capital gain expectations can be a destabilising influence – i.e. the lagged effects of past price gains can drive the market price away from long-run market-worth. Investing based on the outputs of past price-based valuation models appear to be more of a game-of-chance than a sound investment strategy.
Resumo:
A novel voltammetric method for simultaneous determination of the glucocorticoid residues prednisone, prednisolone, and dexamethasone was developed. All three compounds were reduced at a mercury electrode in a Britton-Robinson buffer (pH 3.78), and well-defined voltammetric waves were observed. However, the voltammograms of these three compounds overlapped seriously and showed nonlinear character, and thus, it was difficult to analyze the compounds individually in their mixtures. In this work, two chemometrics methods, principal component regression (PCR) and partial least squares (PLS), were applied to resolve the overlapped voltammograms, and the calibration models were established for simultaneous determination of these compounds. Under the optimum experimental conditions, the limits of detection (LOD) were 5.6, 8.3, and 16.8 µg l-1 for prednisone, prednisolone, and dexamethasone, respectively. The proposed method was also applied for the determination of these glucocorticoid residues in the rabbit plasma and human urine samples with satisfactory results.
Resumo:
A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0–11.5 mg L−1 at 526 and 608 nm for pefloxacin, and 0.15–1.8 mg L−1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPET not, vert, similar 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L−1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.
Resumo:
This paper addresses the following problem: given two or more business process models, create a process model that is the union of the process models given as input. In other words, the behavior of the produced process model should encompass that of the input models. The paper describes an algorithm that produces a single configurable process model from an arbitrary collection of process models. The algorithm works by extracting the common parts of the input process models, creating a single copy of them, and appending the differences as branches of configurable connectors. This way, the merged process model is kept as small as possible, while still capturing all the behavior of the input models. Moreover, analysts are able to trace back from which original model(s) does a given element in the merged model come from. The algorithm has been prototyped and tested against process models taken from several application domains.
Resumo:
Childcare workers play a significant role in the learning and development of children in their care. This has major implications for the training of workers. Under new reforms of the childcare industry the Australian government now requires all workers to obtain qualifications from a vocational education and training provider (eg. Technical and Further Education) or university. Effective models of employment-based training are critical to provide training to highly competent workers. This paper presents findings from a study that examined current and emerging models of employment-based training in the childcare sector, particularly at the Diploma level. Semi-structured interviews were conducted with a sample of 16 participants who represented childcare directors, employers, and workers located in childcare services in urban, regional and remote locations in the State of Queensland. The study proposes a ‘best-fit’ employment-based training approach that is characterised by a compendium of five models instead of a ‘one size fits all’. Issues with successful implementation of the EBT models are also discussed
Resumo:
We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.