167 resultados para Airborne H 2O DIAL
Resumo:
Airborne fine particles were collected at a suburban site in Queensland, Australia between 1995 and 2003. The samples were analysed for 21 elements, and Positive Matrix Factorisation (PMF), Preference Ranking Organisation METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) were applied to the data. PROMETHEE provided information on the ranking of pollutant levels from the sampling years while PMF provided insights into the sources of the pollutants, their chemical composition, most likely locations and relative contribution to the levels of particulate pollution at the site. PROMETHEE and GAIA found that the removal of lead from fuel in the area had a significant impact on the pollution patterns while PMF identified 6 pollution sources including: Railways (5.5%), Biomass Burning (43.3%), Soil (9.2%), Sea Salt (15.6%), Aged Sea Salt (24.4%) and Motor Vehicles (2.0%). Thus the results gave information that can assist in the formulation of mitigation measures for air pollution.
Resumo:
In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.
Resumo:
In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.
Resumo:
While recent research has provided valuable information as to the composition of laser printer particles, their formation mechanisms, and explained why some printers are emitters whilst others are low emitters, fundamental questions relating to the potential exposure of office workers remained unanswered. In particular, (i) what impact does the operation of laser printers have on the background particle number concentration (PNC) of an office environment over the duration of a typical working day?; (ii) what is the airborne particle exposure to office workers in the vicinity of laser printers; (iii) what influence does the office ventilation have upon the transport and concentration of particles?; (iv) is there a need to control the generation of, and/or transport of particles arising from the operation of laser printers within an office environment?; (v) what instrumentation and methodology is relevant for characterising such particles within an office location? We present experimental evidence on printer temporal and spatial PNC during the operation of 107 laser printers within open plan offices of five buildings. We show for the first time that the eight-hour time-weighted average printer particle exposure is significantly less than the eight-hour time-weighted local background particle exposure, but that peak printer particle exposure can be greater than two orders of magnitude higher than local background particle exposure. The particle size range is predominantly ultrafine (< 100nm diameter). In addition we have established that office workers are constantly exposed to non-printer derived particle concentrations, with up to an order of magnitude difference in such exposure amongst offices, and propose that such exposure be controlled along with exposure to printer derived particles. We also propose, for the first time, that peak particle reference values be calculated for each office area analogous to the criteria used in Australia and elsewhere for evaluating exposure excursion above occupational hazardous chemical exposure standards. A universal peak particle reference value of 2.0 x 104 particles cm-3 has been proposed.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
This paper presents the hardware development and testing of a new concept for air sampling via the integration of a prototype spore trap onboard an unmanned aerial system (UAS).We propose the integration of a prototype spore trap onboard a UAS to allow multiple capture of spores of pathogens in single remote locations at high or low altitude, otherwise not possible with stationary sampling devices.We also demonstrate the capability of this system for the capture of multiple time-stamped samples during a single mission.Wind tunnel testing was followed by simulation, and flight testing was conducted to measure and quantify the spread during simulated airborne air sampling operations. During autonomous operations, the onboard autopilot commands the servo to rotate the sampling device to a new indexed location once the UAS vehicle reaches the predefined waypoint or set of waypoints (which represents the region of interest). Time-stamped UAS data are continuously logged during the flight to assist with analysis of the particles collected. Testing and validation of the autopilot and spore trap integration, functionality, and performance is described. These tools may enhance the ability to detect new incursions of spores
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.
Resumo:
-
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.