171 resultados para Air - Pollution - Manaus (Brazil)
Resumo:
OBJECTIVE: This paper reviews the epidemiological evidence on the relationship between ambient temperature and morbidity. It assesses the methodological issues in previous studies, and proposes future research directions. DATA SOURCES AND DATA EXTRACTION: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of non-communicable diseases published in refereed English journals prior to June 2010. 40 relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heatwave on morbidity, and 1 assessed both temperature and heatwave effects. DATA SYNTHESIS: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of non-linear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared to that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded and/or modified by socio-demographic factors and air pollution. CONCLUSIONS: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable.
Resumo:
Particle number concentrations and size distributions, visibility and particulate mass concentrations and weather parameters were monitored in Brisbane, Australia, on 23 September 2009, during the passage of a dust storm that originated 1400 km away in the dry continental interior. The dust concentration peaked at about mid-day when the hourly average PM2.5 and PM10 values reached 814 and 6460 µg m-3, respectively, with a sharp drop in atmospheric visibility. A linear regression analysis showed a good correlation between the coefficient of light scattering by particles (Bsp) and both PM10 and PM2.5. The particle number in the size range 0.5-20 µm exhibited a lognormal size distribution with modal and geometrical mean diameters of 1.6 and 1.9 µm, respectively. The modal mass was around 10 µm with less than 10% of the mass carried by particles smaller than 2.5 µm. The PM10 fraction accounted for about 68% of the total mass. By mid-day, as the dust began to increase sharply, the ultrafine particle number concentration fell from about 6x103 cm-3 to 3x103 cm-3 and then continued to decrease to less than 1x103 cm-3 by 14h, showing a power-law decrease with Bsp with an R2 value of 0.77 (p<0.01). Ultrafine particle size distributions also showed a significant decrease in number during the dust storm. This is the first scientific study of particle size distributions in an Australian dust storm.
Resumo:
In September 2009 an enormous dust storm swept across eastern Australia. Dust is potentially hazardous to health as it interferes with breathing, and previous dust storms have been linked to increased risks of asthma and even death. We examined whether the 2009 Australian dust storm changed the volume or characteristics of emergency admissions to hospital. We used an observational study design, using time series analyses to examine changes in the number of admissions, and case-only analyses to examine changes in the characteristics of admissions. The admission data were from the Prince Charles Hospital, Brisbane, between 1 January 2009 and 31 October 2009. There was a 39% increase in emergency admissions associated with the storm (95% confidence interval: 5, 81%), which lasted for just one day. The health effects of the storm could not be detected using particulate matter levels. We found no significant change in the characteristics of admissions during the storm, specifically there was no increase in respiratory admissions. The dust storm had a short-lived impact on emergency hospital admissions. This may be because the public took effective avoidance measures, or because the dust was simply not toxic, being mainly composed of soil. Emergency departments should be prepared for a short-term increase in admissions during dust storms.
Resumo:
Lately, there has been increasing interest in the association between temperature and adverse birth outcomes including preterm birth (PTB) and stillbirth. PTB is a major predictor of many diseases later in life, and stillbirth is a devastating event for parents and families. The aim of this study was to assess the seasonal pattern of adverse birth outcomes, and to examine possible associations of maternal exposure to temperature with PTB and stillbirth. We also aimed to identify if there were any periods of the pregnancy where exposure to temperature was particularly harmful. A retrospective cohort study design was used and we retrieved individual birth records from the Queensland Health Perinatal Data Collection Unit for all singleton births (excluding twins and triplets) delivered in Brisbane between 1 July 2005 and 30 June 2009. We obtained weather data (including hourly relative humidity, minimum and maximum temperature) and air-pollution data (including PM10, SO2 and O3) from the Queensland Department of Environment and Resource Management. We used survival analyses with the time-dependent variables of temperature, humidity and air pollution, and the competing risks of stillbirth and live birth. To assess the monthly pattern of the birth outcomes, we fitted month of pregnancy as a time-dependent variable. We examined the seasonal pattern of the birth outcomes and the relationship between exposure to high or low temperatures and birth outcomes over the four lag weeks before birth. We further stratified by categorisation of PTB: extreme PTB (< 28 weeks of gestation), PTB (28–36 weeks of gestation), and term birth (≥ 37 weeks of gestation). Lastly, we examined the effect of temperature variation in each week of the pregnancy on birth outcomes. There was a bimodal seasonal pattern in gestation length. After adjusting for temperature, the seasonal pattern changed from bimodal, to only one peak in winter. The risk of stillbirth was statistically significant lower in March compared with January. After adjusting for temperature, the March trough was still statistically significant and there was a peak in risk (not statistically significant) in winter. There was an acute effect of temperature on gestational age and stillbirth with a shortened gestation for increasing temperature from 15 °C to 25 °C over the last four weeks before birth. For stillbirth, we found an increasing risk with increasing temperatures from 12 °C to approximately 20 °C, and no change in risk at temperatures above 20 °C. Certain periods of the pregnancy were more vulnerable to temperature variation. The risk of PTB (28–36 weeks of gestation) increased as temperatures increased above 21 °C. For stillbirth, the fetus was most vulnerable at less than 28 weeks of gestation, but there were also effects in 28–36 weeks of gestation. For fetuses of more than 37 weeks of gestation, increasing temperatures did not increase the risk of stillbirth. We did not find any adverse affects of cold temperature on birth outcomes in this cohort. My findings contribute to knowledge of the relationship between temperature and birth outcomes. In the context of climate change, this is particularly important. The results may have implications for public health policy and planning, as they indicate that pregnant women would decrease their risk of adverse birth outcomes by avoiding exposure to high temperatures and seeking cool environments during hot days.
Resumo:
The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.
Resumo:
Ultrafine particles (UFPs, <100 nm) are produced in large quantities by vehicular combustion and are implicated in causing several adverse human health effects. Recent work has suggested that a large proportion of daily UFP exposure may occur during commuting. However, the determinants, variability and transport mode-dependence of such exposure are not well-understood. The aim of this review was to address these knowledge gaps by distilling the results of ‘in-transit’ UFP exposure studies performed to-date, including studies of health effects. We identified 47 exposure studies performed across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. These encompassed approximately 3000 individual trips where UFP concentrations were measured. After weighting mean UFP concentrations by the number of trips in which they were collected, we found overall mean UFP concentrations of 3.4, 4.2, 4.5, 4.7, 4.9 and 5.7 × 10^4 particles cm^-3 for the bicycle, bus, automobile, rail, walking and ferry modes, respectively. The mean concentration inside automobiles travelling through tunnels was 3.0 × 10^5 particles cm^-3. While the mean concentrations were indicative of general trends, we found that the determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust treatment technologies, cabin ventilation, filtration, deposition, UFP penetration) exhibited marked variability and mode-dependence, such that it is not necessarily appropriate to rank modes in order of exposure without detailed consideration of these factors. Ten in-transit health effects studies have been conducted and their results indicate that UFP exposure during commuting can elicit acute effects in both healthy and health-compromised individuals. We suggest that future work should focus on further defining the contribution of in-transit UFP exposure to total UFP exposure, exploring its specific health effects and investigating exposures in the developing world. Keywords: air pollution; transport modes; acute health effects; travel; public transport
Resumo:
The need to find an alternative to our current transport situation is widely accepted. In most cities of the world, traffic congestion is commonplace and air pollution is normal. Road fatalities are a regular and almost accepted event. And (in most developed nations) as an indirect consequence of our transport choices, obesity is increasing at an alarming rate. The car is undeniably a major contributor to this situation. Additionally the very structure of our cities has evolved to the point that it can be creditably claimed that the city belongs to the car and not to humans. There are however alternatives. There is a plethora of experimental vehicles in all shapes and configurations. And yet, the car is still king. The question is, how do we pick a winner? What are the aspects of the car that make it so appealing? Are these aspects able to be translated into a more sustainable version? What do we need to incorporate in our designs of new vehicles to make them more appealing to the consumers? In this paper I explore these questions and propose a list of design criteria for more sustainable transport options.
Resumo:
Objective: To determine the major health related risk factors and provide evidence for policy-making,using health burden analysis on selected factors among general population from Shandong province. Methods: Based on data derived from the Third Death of Cause Sampling Survey in Shandong. Years of life lcrat(YLLs),yearS Iived with disability(YLDs)and disability-adjusted life years(DALYs) were calculated according to the GBD ethodology.Deaths and DALYs attributed to the selected risk factors were than estimated together with the PAF data from GBD 2001 study.The indirect method was employed to estimate the YLDs. Results: 51.09%of the total dearlls and 31.83%of the total DALYs from the Shandong population were resulted from the 19 selected risk factors.High blood pre.ure,smoking,low fruit and vegetable intake,aleohol consumption,indoor smoke from solid fuels,high cholesterol,urban air pollution, physical inactivity,overweight and obesity and unsafe injections in health care settings were identified as the top 10 risk faetors for mortality which together caused 50.21%of the total deaths.Alcohol use,smoking,high blood pressure,Low fruit and vegetable intake, indoor smoke from solid fuels, overweight and obesity,high cholesterol, physical inactivity,urban air pollution and iron-deficiency anemia were proved as the top 10 risk factors related to disease burden and were responsible for 29.04%of the total DALYs. Conclusion: Alcohol use.smoking and high blood pressure were determined as the major risk factors which influencing the health of residents in Shandong. The mortality and burden of disease could be reduced significantly if these major factors were effectively under control.
Resumo:
The paper presents the results of a study conducted into the relationship between dwelling characteristics and occupant activities with the respiratory health of resident women and children in Lao People’s Democratic Republic (PDR). Lao is one of the least developed countries in south-east Asia with poor life expectancies and mortality rates. The study, commissioned by the World Health Organisation, included questionnaires delivered to residents of 356 dwellings in nine districts in Lao PDR over a five month period (December 2005-April 2006), with the aim of identifying the association between respiratory health and indoor air pollution, in particular exposures related to indoor biomass burning. Adjusted odds ratios were calculated for each health outcome separately using binary logistic regression. After adjusting for age, a wide range of symptoms of respiratory illness in women and children aged 1-4 years were positively associated with a range of indoor exposures related to indoor cooking, including exposure to a fire and location of the cooking place. Among women, “dust always inside the house” and smoking were also identified as strong risk factors for respiratory illness. Other strong risk factors for children, after adjusting for age and gender, included dust and drying clothes inside. This analysis confirms the role of indoor air pollution in the burden of disease among women and children in Lao PDR.
Resumo:
The deterioration of air quality is a significant issue in large and growing cities. This work investigates particulate emissions from transport, the largest source of air pollution in cities today. Emitters such as busy roads and diesel trains are investigated, with specific reference to the evolution of particles over time and distance. Diesel trains are investigated as an alternative to road traffic in investigating evolutionary processes. Higher emissions and solitary sources mean that the emitted plume can be observed over time in a single location. These results represent the first investigation of the evolution of fine and ultrafine aerosol particles from this type of source. Aerosols near a busy road are investigated, with the result that a dependence of total number concentration on distance from the road is shown to be related to the fragmentation of nanoparticle clusters. Local meteorological conditions are also monitored and humidity is shown to vary with distance from the road in a nonmonotonic way. Particles from a busy road were also examined using a scanning electron microscope, with the intention of understanding the make up of the emitted aerosol plume. It was determined that due to significant surface behaviour post-deposition, this method of analysis could not directly classify airborne pollutants. Some interesting results were obtained however, particularly in terms of composite particles and the analysis of deposited patterns. This thesis introduces new work in terms of the analysis of diesel train particulate emissions, as well as adding further evidence towards the fragmentation process of aerosol evolution in both background concentrations and emitted aerosol plumes.
Resumo:
House dust is a heterogeneous matrix, which contains a number of biological materials and particulate matter gathered from several sources. It is the accumulation of a number of semi-volatile and non-volatile contaminants. The contaminants are trapped and preserved. Therefore, house dust can be viewed as an archive of both the indoor and outdoor air pollution. There is evidence to show that on average, people tend to stay indoors most of the time and this increases exposure to house dust. The aims of this investigation were to: " assess the levels of Polycyclic Aromatic Hydrocarbons (PAHs), elements and pesticides in the indoor environment of the Brisbane area; " identify and characterise the possible sources of elemental constituents (inorganic elements), PAHs and pesticides by means of Positive Matrix Factorisation (PMF); and " establish the correlations between the levels of indoor air pollutants (PAHs, elements and pesticides) with the external and internal characteristics or attributes of the buildings and indoor activities by means of multivariate data analysis techniques. The dust samples were collected during the period of 2005-2007 from homes located in different suburbs of Brisbane, Ipswich and Toowoomba, in South East Queensland, Australia. A vacuum cleaner fitted with a paper bag was used as a sampler for collecting the house dust. A survey questionnaire was filled by the house residents which contained information about the indoor and outdoor characteristics of their residences. House dust samples were analysed for three different pollutants: Pesticides, Elements and PAHs. The analyses were carried-out for samples of particle size less than 250 µm. The chemical analyses for both pesticides and PAHs were performed using a Gas Chromatography Mass Spectrometry (GC-MS), while elemental analysis was carried-out by using Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS). The data was subjected to multivariate data analysis techniques such as multi-criteria decision-making procedures, Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), coupled with Geometrical Analysis for Interactive Aid (GAIA) in order to rank the samples and to examine data display. This study showed that compared to the results from previous works, which were carried-out in Australia and overseas, the concentrations of pollutants in house dusts in Brisbane and the surrounding areas were relatively very high. The results of this work also showed significant correlations between some of the physical parameters (types of building material, floor level, distance from industrial areas and major road, and smoking) and the concentrations of pollutants. Types of building materials and the age of houses were found to be two of the primary factors that affect the concentrations of pesticides and elements in house dust. The concentrations of these two types of pollutant appear to be higher in old houses (timber houses) than in the brick ones. In contrast, the concentrations of PAHs were noticed to be higher in brick houses than in the timber ones. Other factors such as floor level, and distance from the main street and industrial area, also affected the concentrations of pollutants in the house dust samples. To apportion the sources and to understand mechanisms of pollutants, Positive Matrix Factorisation (PMF) receptor model was applied. The results showed that there were significant correlations between the degree of concentration of contaminants in house dust and the physical characteristics of houses, such as the age and the type of the house, the distance from the main road and industrial areas, and smoking. Sources of pollutants were identified. For PAHs, the sources were cooking activities, vehicle emissions, smoking, oil fumes, natural gas combustion and traces of diesel exhaust emissions; for pesticides the sources were application of pesticides for controlling termites in buildings and fences, treating indoor furniture and in gardens for controlling pests attacking horticultural and ornamental plants; for elements the sources were soil, cooking, smoking, paints, pesticides, combustion of motor fuels, residual fuel oil, motor vehicle emissions, wearing down of brake linings and industrial activities.
Resumo:
The National Morbidity, Mortality, and Air Pollution Study (NMMAPS) was designed to examine the health effects of air pollution in the United States. The primary question was whether particulate matter was responsible for the associations between air pollution and daily mortality. Secondary questions concerned measurement error in air pollution and mortality displacement.1 Since then, NMMAPS has been used to answer many important questions in environmental epidemiology...
Resumo:
An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).