232 resultados para Adaptive filtering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents research in response to environmental concerns we face today. In a search for a better method to manage spaces and building resources consumed excessively through traditional top-down architectural solutions, the research began by speculating that the building spaces and resources can be managed by designing architectural systems that encourage a bottom-up approach. In other words, this research investigates how to design systems that encourage occupants and users of buildings to actively understand, manage and customise their own spaces. Specific attention is paid to the participation of building users because no matter how sophisticated the system is, the building will become as wasteful as conventional buildings if users cannot, or do not want to, utilise the system effectively. The research is still in its early stages. The intension of this paper is to provide a background to the issue, discuss researches and projects relevant to, but not necessarily about, architecture, and introduce a number of hypothesis and investigations to realise adaptable, participatory and sustainable environments for users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel distributed coding protocol for multi-user cooperative networks. The proposed distributed coding protocol exploits the existing orthogonal space-time block codes to achieve higher diversity gain by repeating the code across time and space (available relay nodes). The achievable diversity gain depends on the number of relay nodes that can fully decode the signal from the source. These relay nodes then form space-time codes to cooperatively relay to the destination using number of time slots. However, the improved diversity gain is archived at the expense of the transmission rate. The design principles of the proposed space-time distributed code and the issues related to transmission rate and diversity trade off is discussed in detail. We show that the proposed distributed space-time coding protocol out performs existing distributed codes with a variable transmission rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information Overload and Mismatch are two fundamental problems affecting the effectiveness of information filtering systems. Even though both term-based and patternbased approaches have been proposed to address the problems of overload and mismatch, neither of these approaches alone can provide a satisfactory solution to address these problems. This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern-based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experimental results based on the RCV1 corpus show that the proposed twostage filtering model significantly outperforms the both termbased and pattern-based information filtering models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following report considers a number of key challenges the Australian Federal Government faces in designing the regulatory framework and the reach of its planned mandatory internet filter. Previous reports on the mandatory filtering scheme have concentrated on the filtering technologies, their efficacy, their cost and their likely impact on the broadband environment. This report focuses on the scope and the nature of content that is likely to be caught by the proposed filter and on identifying associated public policy implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new rat animat, a rat-sized bio-inspired robot platform currently being developed for embodied cognition and neuroscience research. The rodent animat is 150mm x 80mm x 70mm and has a different drive, visual, proximity, and odometry sensors, x86 PC, and LCD interface. The rat animat has a bio-inspired rodent navigation and mapping system called RatSLAM which demonstrates the capabilities of the platform and framework. A case study is presented of the robot's ability to learn the spatial layout of a figure of eight laboratory environment, including its ability to close physical loops based on visual input and odometry. A firing field plot similar to rodent 'non-conjunctive grid cells' is shown by plotting the activity of an internal network. Having a rodent animat the size of a real rat allows exploration of embodiment issues such as how the robot's sensori-motor systems and cognitive abilities interact. The initial observations concern the limitations of the deisgn as well as its strengths. For example, the visual sensor has a narrower field of view and is located much closer to the ground than for other robots in the lab, which alters the salience of visual cues and the effectiveness of different visual filtering techniques. The small size of the robot relative to corridors and open areas impacts on the possible trajectories of the robot. These perspective and size issues affect the formation and use of the cognitive map, and hence the navigation abilities of the rat animat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.