93 resultados para Acrylic Hydrogels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. METHODS Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. RESULTS The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. CONCLUSIONS Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To document contact lens prescribing patterns in the United States between 2002 and 2014. Methods A survey of contact lens prescribing trends was conducted each year between 2002 and 2014, inclusive. Randomly selected contact lens practitioners were asked to provide information relating to 10 consecutive contact lens fits between January and March each year. Results Over the 13-year survey period, 1650 survey forms were received from US practitioners representing details of 7702 contact lens fits. The mean (±SD) age of lens wearers was 33.6 (±15.2) years, of whom 65.2% were female. Rigid lens new fits decreased from 13.0% in 2002 to 9.4% in 2014. Across this period, silicone hydrogels have replaced mid water contact lens hydrogels as the soft lens material of choice. Toric lenses represented about 25 to 30% of all soft lens fits. Multifocal soft lenses are generally preferred to monovision. Daily disposable lens fits have recently increased, and in 2014, they represented 27.1% of all soft lens fits. Most lenses are prescribed on 1 to 2 weekly or monthly lens replacement regimen. Extended wear remains a minority lens wearing modality. The vast majority of those wearing reusable lenses use multipurpose lens care solutions. Lenses are mostly worn 7 d/wk. Conclusions This survey has revealed prescribing trends and preferences in the United States over the past 13 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14 days, cancer spheroids of 100-200µm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process.