94 resultados para ATMOSPHERIC NUCLEATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemical composition of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition (particles above 50 nm in vacuum aerodynamic diameter) and PNSD (particles within 9-414 nm in mobility diameter), respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two of the sites. The NPF events happened on relatively warmer days with lower condensation sink (CS). Temporal percent fractions of organics increased after the particles grew enough to have a significant contribution to particles volume, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. K-means cluster analysis was performed on f44 vs f43 data and it was found that they follow different patterns on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be potentially used as a tool for source apportionment of measured particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent decades, efforts have been made to reduce human exposure to atmospheric pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) through emission control and abatement. Along with the potential changes in their concentrations resulting from these efforts, profiles of emission sources may have also changed over such extended timeframes. However relevant data are quite limited in the Southern Hemisphere. We revisited two sampling sites in an Australian city, where the concentration data in 1994/5 for atmospheric PAHs and PCBs were available. Monthly air samples from July 2013 to June 2014 at the two sites were collected and analysed for these compounds, using similar protocols to the original study. A prominent seasonal pattern was observed for PAHs with elevated concentrations in cooler months whereas PCB levels showed little seasonal variation. Compared to two decades ago, atmospheric concentrations of ∑13 PAHs (gaseous + particle-associated) in this city have decreased by approximately one order of magnitude and the apparent halving time ( t 1 / 2 ) was estimated as 6.2 ± 0.56 years. ∑6 iPCBs concentrations (median value; gaseous + particle-associated) have decreased by 80% with an estimated t 1 / 2 of 11 ± 2.9 years. These trends and values are similar to those reported for comparable sites in the Northern Hemisphere. To characterise emission source profiles, samples were also collected from a bushfire event and within a vehicular tunnel. Emissions from bushfires are suggested to be an important contributor to the current atmospheric concentrations of PAHs in this city. This contribution is more important in cooler months, i.e. June, July and August, and its importance may have increased over the last two decades.