987 resultados para SEMIEMPIRICAL ANALYSIS
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
Resumo:
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.
Resumo:
This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated
Resumo:
The rapid growth of services available on the Internet and exploited through ever globalizing business networks poses new challenges for service interoperability. New services, from consumer “apps”, enterprise suites, platform and infrastructure resources, are vying for demand with quickly evolving and overlapping capabilities, and shorter cycles of extending service access from user interfaces to software interfaces. Services, drawn from a wider global setting, are subject to greater change and heterogeneity, demanding new requirements for structural and behavioral interface adaptation. In this paper, we analyze service interoperability scenarios in global business networks, and propose new patterns for service interactions, above those proposed over the last 10 years through the development of Web service standards and process choreography languages. By contrast, we reduce assumptions of design-time knowledge required to adapt services, giving way to run-time mismatch resolutions, extend the focus from bilateral to multilateral messaging interactions, and propose declarative ways in which services and interactions take part in long-running conversations via the explicit use of state.
Resumo:
Background Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Methods Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Findings Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Interpretation Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Funding Bill & Melinda Gates Foundation.
Resumo:
In recent years, organoclays have become widely used in many industrial applications, and particularly they have been applied as adsorbents for water purification (de Paiva et al., 2008; Zhou et al., 2008; Park et al., 2011). When the organoclays are enhanced by intercalation of cationic surfactant molecules, the surface properties are altered from hydrophilic to highly hydrophobic. These changes facilitate their industrial applications which are strongly dependent on the structural properties of organoclays (Koh and Dixon, 2001; Zeng et al., 2004; Cui et al., 2007). Thus a better understanding of the configuration and structural change in the organoclays by thermogravimetric analysis (TG) is essential. It has been proven that the TG is very useful for the study of complex minerals, modified minerals, and nanomaterials (Laachachi et al., 2005; Palmer et al., 2011; Park et al., in press, 2011). Therefore, the current investigation involves the thermal stability of a montmorillonite intercalated with two types of cationic surfactants: dodecyltrimethylammonium bromide (DDTMA) and didodecyldimethylammonium bromide (DDDMA) using TG. The modification of montmorillonite results in an increase in the interlayer or basal spacing and enhances the environmental and industrial application of the obtained organoclay.
Resumo:
Background: The 30-item USDI is a self-report measure that assesses depressive symptoms among university students. It consists of three correlated three factors: Lethargy, Cognitive-Emotional and Academic motivation. The current research used confirmatory factor analysis to asses construct validity and determine whether the original factor structure would be replicated in a different sample. Psychometric properties were also examined. Method: Participants were 1148 students (mean age 22.84 years, SD = 6.85) across all faculties from a large Australian metropolitan university. Students completed a questionnaire comprising of the USDI, the Depression Anxiety Stress Scale (DASS) and Life Satisfaction Scale (LSS). Results: The three correlated factor model was shown to be an acceptable fit to the data, indicating sound construct validity. Internal consistency of the scale was also demonstrated to be sound, with high Cronbach Alpha values. Temporal stability of the scale was also shown to be strong through test-retest analysis. Finally, concurrent and discriminant validity was examined with correlations between the USDI and DASS subscales as well as the LSS, with sound results contributing to further support the construct validity of the scale. Cut-off points were also developed to aid total score interpretation. Limitations: Response rates are unclear. In addition, the representativeness of the sample could be improved potentially through targeted recruitment (i.e. reviewing the online sample statistics during data collection, examining the representativeness trends and addressing particular faculties within the university that were underrepresented). Conclusions: The USDI provides a valid and reliable method of assessing depressive symptoms found among university students.
Resumo:
There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.
Resumo:
The role of the judiciary in common law systems is to create law, interpret law and uphold the law. As such decisions by courts on matters related to ecologically sustainable development, natural resource use and management and climate change make an important contribution to earth jurisprudence. There are examples where judicial decisions further the goals of earth jurisprudence and examples where decisions go against the principles of earth jurisprudence. This presentation will explore judicial approaches to standing in Australia and America. The paper will explore two trends in each jurisdiction. Approaches by American courts to standing will be examined in reference to climate change and environmental justice litigation. While Australian approaches to standing will be examined in the context of public interest litigation and environmental criminal negligence cases. The presentation will draw some conclusions about the role of standing in each of these cases and implications of this for earth jurisprudence.
Resumo:
Despite a considerable amount of research on traffic injury severities, relatively little is known about the factors influencing traffic injury severity in developing countries, and in particular in Bangladesh. Road traffic crashes are a common headline in daily newspapers of Bangladesh. It has also recorded one of the highest road fatality rates in the world. This research identifies significant factors contributing to traffic injury severity in Dhaka – a mega city and capital of Bangladesh. Road traffic crash data of 5 years from 2007 to 2011 were collected from the Dhaka Metropolitan Police (DMP), which included about 2714 traffic crashes. The severity level of these crashes was documented in a 4-point ordinal scale: no injury (property damage), minor injury, severe injury, and death. An ordered Probit regression model has been estimated to identify factors contributing to injury severities. Results show that night time influence is associated with a higher level injury severity as is for individuals involved in single vehicle crashes. Crashes on highway sections within the city are found to be more injurious than crashes along the arterial and feeder roads. There is a lower likelihood of injury severity, however, if the road sections are monitored and enforced by the traffic police. The likelihood of injuries is lower on two-way traffic arrangements than one-way, and at four-legged intersections and roundabouts compare to road segments. The findings are compared with those from developed countries and the implications of this research are discussed in terms of policy settings for developing countries.
Resumo:
Driving on an approach to a signalized intersection while distracted is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. Given the prevalence and importance of this particular scenario, the decisions and actions of distracted drivers during the onset of yellow lights are the focus of this study. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of Iowa - National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examination has been conducted from a traditional regression-based approach, which does not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that novice (16-17 years) and young drivers’ (18-25 years) have heightened yellow light running risk while distracted by a cell phone conversation. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Overall, distracted drivers across most tested groups tend to reduce the propensity of yellow light running as the distance to stop line increases, exhibiting risk compensation on a critical driving situation.