998 resultados para Resolvable Design
Resumo:
The physical, emotional, educational and social developmental challenges of adolescence can be associated with high levels of emotional vulnerability. Thus, the development of effective emotion-regulation strategies is crucial during this time period. Young people commonly use music to identify, express and regulate their emotions. Modern mobile technology provides an engaging, easily accessible means of assisting young people through music. A systematic contextual review identified 20 iPhone applications addressing emotions through music and two independent raters, using the Mobile App Rating Scale (MARS), evaluated the quality of the apps. Their characteristics, key features and overall quality will be presented. Three participatory design workshops (N=13, 6 males, 7 females; age 15-25) were conducted to explore young people’s use of music to enhance wellbeing. Young people were also asked to trial existing mood and music apps and to conceptualise their ultimate mood targeting music application. A thematic analysis of the participatory design workshops content identified the following music affect-regulation strategies: relationship building, modifying cognitions, modifying emotions, and immersing in emotions. The application of the key learnings from the mobile app review and participatory design workshops and the design and development of the music eScape app were presented and implications for future research was discussed.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
The paper presents a participatory design research framework as a primary method for structuring youth engagement, participation and contribution to the design, development and usability evaluation of three evidencebased e-tools for wellbeing, which include smart phone mobile apps as well as e-health websites. The three projects are part of a series of six e-tools part of Safe and Supportive program under Young and Well CRC. The participatory design method, developed by Zelenko (2012) for application in design of online health promoting technologies, was further piloted in partnership with Inspire USA for specific application within the CRC, deploying a combination of creative design workshops and speculative design activities in developing e-tool prototypes with young people. This paper presents the resulting participatory research framework as it was implemented across the e-tool projects to facilitate active youth participation in co-designing the e-tools and ensuring the final designs are relevant to young people and deliver health messages in engaging ways. The principles of Participatory Design (PD) that inform the new framework include a high degree of participant agency in creative decisionmaking and a commitment to the process of co-designing, with young people working alongside designers and developers. The paper will showcase how the PD framework was applied across three projects to increase young people’s contribution to final design outcome.
Resumo:
Parametric ship roll resonance is a phenomenon where a ship can rapidly develop high roll motion while sailing in longitudinal waves. This effect can be described mathematically by periodic changes of the parameters of the equations of motion, which lead to a bifurcation. In this paper, the control design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via simulation on a high-fidelity model of a vessel under parametric roll resonance.
Resumo:
This paper explores an emerging paradigm for HCI design research based primarily upon engagement, reciprocity and doing. Much HCI research begins with an investigatory and analytic ethnographic approach before translating to design. Design may come much later in the process and may never benefit the community that is researched. However in many settings it is difficult for researchers to access the privileged ethnographer position of observer and investigator. Moreover rapid ethnographic research often does not seem the best or most appropriate course of action. We draw upon a project working with a remote Australian Aboriginal community to illustrate an alternative approach in Indigenous research, where the notion of reciprocity is first and foremost. We argue that this can lead to sustainable designs, valid research and profound innovation. This paper received the ACM CHI Best Paper Award, which is awarded to the top 1% of papers submitted to the ACM CHI conference.
Resumo:
Issues of autonomy impact motivation, the user experience and even psychological wellbeing, yet many questions surrounding design for autonomy remain unanswered. This workshop will explore theory, issues and design strategies related to autonomy drawing on theoretical frameworks available in psychology and looking at autonomy from multiple levels. These include user autonomy within the context of software environments, technologies that increase autonomy in daily life, and how technologies might foster autonomy as a component of psychological development.
Resumo:
The validity of fatigue protocols involving multi-joint movements, such as stepping, has yet to be clearly defined. Although surface electromyography can monitor the fatigue state of individual muscles, the effects of joint angle and velocity variation on signal parameters are well established. Therefore, the aims of this study were to i) describe sagittal hip and knee kinematics during repetitive stepping ii) identify periods of high inter-trial variability and iii) determine within-test reliability of hip and knee kinematic profiles. A group of healthy men (N = 15) ascended and descended from a knee-high platform wearing a weighted vest (10%BW) for 50 consecutive trials. The hip and knee underwent rapid flexion and extension during step ascent and descent. Variability of hip and knee velocity peaked between 20-40% of the ascent phase and 80-100% of the descent. Significant (p<0.05) reductions in joint range of motion and peak velocity during step ascent were observed, while peak flexion velocity increased during descent. Healthy individuals use complex hip and knee motion to negotiate a knee-high step with kinematic patterns varying across multiple repetitions. These findings have important implications for future studies intending to use repetitive stepping as a fatigue model for the knee extensors and flexors.
Resumo:
In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.
Resumo:
A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.
Resumo:
Relevant to the study of people’s attitudes towards public transport use is the consideration to the role of technology as part of the travel experience. Technologies aim to enhance daily tasks but tend to change the way people interact with products and can be perceived as difficult to use. This is critical in the context of “public use” where products and services are to be used by the population at large: adults, children, elderly, people with disabilities, and tourists. From different perspectives, the topic of users and the use of technologies have been studied in the social sciences and human computer interaction fields; however, earlier approaches fail to address the ways in which experiential knowledge informs people’s interactions with products and technologies, and how such information could guide the design of future technologies. This paper describes a pilot study, part of a larger ongoing exploratory research that investigates people’s experiences with infrastructure, systems, and technologies in the context of public transport. The methodological approach included focus groups, field observations, and retrospective verbal reports. At this stage, the study found that four context led factors were the primary source of reference informing participants’ actions and interactions; they are: (i) context >> experience, (ii) context >> interface, (iii) context >> knowledge, (iv) context >> emotion.
Resumo:
This paper presents an object-oriented world model for the road traffic environment of autonomous (driver-less) city vehicles. The developed World Model is a software component of the autonomous vehicle's control system, which represents the vehicle's view of its road environment. Regardless whether the information is a priori known, obtained through on-board sensors, or through communication, the World Model stores and updates information in real-time, notifies the decision making subsystem about relevant events, and provides access to its stored information. The design is based on software design patterns, and its application programming interface provides both asynchronous and synchronous access to its information. Experimental results of both a 3D simulation and real-world experiments show that the approach is applicable and real-time capable.
Resumo:
A robust and reliable grid power interface system for wind turbines using a permanent-magnet synchronous generator (PMSG) is proposed in this paper, where an integration of a generator-side three-switch buck-type rectifier and a grid-side Z-source inverter is employed as a bridge between the generator and the grid. The modulation strategy for the proposed topology is developed from space-vector modulation and Z-source network operation principles. Two PMSG control methods, namely, unity-power-factor control and rotor-flux-orientation control (Id = 0), are studied to establish an optimized control scheme for the generator-side three-switch buck-type rectifier. The system control scheme decouples active- and reactive-power control through voltage-oriented control and optimizes PMSG control for the grid- and generator-side converters independently. Maximum power point tracking is implemented by adjusting the shoot-through duty cycles of the Z-source network. The design considerations of the passive components are also provided. The performances and practicalities of the designed architecture have been verified by simulations and experiments.
Resumo:
Various tools have been developed to assist designers in making interfaces easier to use although none yet offer a complete solution. Through previous work we have established that intuitive interaction is based on past experience. From this we have developed theory around intuitive interaction, a continuum and a conceptual tool for intuitive use. We then trialled our tool. Firstly, one designer used the tool to design a camera. Secondly, seven groups of postgraduate students re-designed various products using our tool. We then chose one of these - a microwave – and prototyped the new and original microwave interfaces on a touchscreen. We tested them on three different age groups. We found that the new design was more intuitive and rated by participants as more familiar. Therefore, design interventions based on our intuitive interaction theory can work. Work is ongoing to develop the tool further.
Resumo:
This project develops new knowledge on the full range of activities and interactions that make up airport passengers' retail experiences. The practical application of this new knowledge will improve the design of airport retail environments and will, in turn, improve passenger experiences, leading to further growth in the airport retail market. The novel methodological approach developed allowed for a new and deeper understanding of how passengers actually experience airport retail environments. Four significant outcomes were discovered: (i) the categorisation of the full range of retail activities and interactions passengers actually undertake, (ii) a new understanding of how passengers use and experience their free airport time, (iii) two new passenger market segments, and (iv) two passenger retail experience tools, with these identifying the broad range of airport-specific factors which influence passengers retail experiences.