961 resultados para Design defect
Resumo:
In this paper, we provide the results of a field study of a Ubicomp system called CAM (Cooperative Artefact Memory) in a Product Design studio. CAM is a mobile-tagging based messaging system that allows designers to store relevant information onto their design artefacts in the form of messages, annotations and external web links. From our field study results, we observe that the use of CAM adds another shared ‘space’ onto these design artefacts – that are in their natural settings boundary objects themselves. In the paper, we provide several examples from the field illustrating how CAM helps in the design process.
Resumo:
Design Pressure Test 2013 was a full-day intensive design immersion creative event run on Saturday 3 August 2013, at the QUT Faculty of Creative Industries J Block Design Lab Workshop in Brisbane, Australia, for 25 self-selected high-achieving junior and middle school (year 5-9) students, as part of the Queensland Academies ‘Young Scholars’ Program. Facilitated by tertiary interior design, fashion design and industrial design educators, technicians and six tertiary interior design and fashion design students, the workshop explored design process, environmental impact, the material properties and structural integrity of cardboard, construction techniques, and the production and evaluation of furniture design prototypes. This action research study aimed to facilitate an awareness in young people, of the role and scope of design within our society, the environmental ramifications of design decisions, and the value of design thinking skills in generating strategies to solve basic to complex challenges. It also aimed to investigate the value of collaboration between junior and middle school students, tertiary design educators and students and industry professionals in design awareness, and inspiring post-secondary pathways and idea generation for education. During the creative event, students utilised mathematics skills and developed sketching, making, communication, presentation and collaboration skills to improve their design process, while considering social, cultural and environmental opportunities. Through a series of hands-on collaborative design experiments, participants explored in teams of five, the opportunities available using cardboard as a material – inspiring both functional and aesthetic design solutions. Underpinned by the State Library of Queensland Design Minds Website ‘inquire, ideate and implement’ model of design thinking, the experiments culminated in the development of a detailed client brief, the design and fabrication of a furniture item for seating, and then a team presentation of prototypes to a panel of judges from the professions of architecture, interior design and industrial design, viewed also by parents. The final test for structural integrity was measured by the hoisting down of an adult body weight onto the fabricated seat. The workshop was filmed for the television program ‘Totally Wild’ for dissemination nationally (over 200,000 viewing audience) of the value of design and the Design Minds model to a wider target youth audience.
Resumo:
Whole System Design is increasingly being seen as one of the most cost effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system. A focus on design is critical, as the output from this stage of the project locks-in most of the economic and environmental performance of the designed system throughout its life, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers – particularly engineers, architects and industrial designers – need to be able to understand and implement a whole system design approach. This book provides a clear design methodology, based on leading efforts in the field, and is supported by worked examples that demonstrate how advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering. Chapters 1–5 outline the approach and explain how it can be implemented to enhance the established Systems Engineering framework. Chapters 6–10 demonstrate, through detailed worked examples, the application of the approach to industrial pumping systems, passenger vehicles, electronics and computer systems, temperature control of buildings, and domestic water systems.
Resumo:
The design of society’s major infrastructure systems are generally based on anthropogenic learnings and seldom encapsulate learning from nature. This results from a pervading attitude of superiority of human-designed systems, particularly since the Industrial Revolution. Problems created by such behaviours have previously not been thought to present a serious threat to humanity. However, many built environment professionals are now reconsidering the impact of such systems on the environment and their vulnerability to issues such as climate change. This paper presents an approach to delivering sustainable urban infrastructure that addresses 21st Century needs by emulating natural form, function and process - biomimicry – in infrastructure design. The analysis reveals the context for infrastructure change and the need for sustainable solutions, detailing the current inquiry into biomimicry informed design and highlighting potential applications from literature that demonstrate precedence for nature to inspire the design of urban infrastructure, in particular water and energy systems.
Resumo:
With increasing signs of climate change and the influence of national and international carbon-related laws and agreements, governments all over the world are grappling with how to rapidly transition to low-carbon living. This includes adapting to the impacts of climate change that are very likely to be experienced due to current emission levels (including extreme weather and sea level changes), and mitigating against further growth in greenhouse gas emissions that are likely to result in further impacts. Internationally, the concept of ‘Biophilic Urbanism’, a term coined by Professors Tim Beatley and Peter Newman to refer to the use of natural elements as design features in urban landscapes, is emerging as a key component in addressing such climate change challenges in rapidly growing urban contexts. However, the economics of incorporating such options is not well understood and requires further attention to underpin a mainstreaming of biophilic urbanism. Indeed, there appears to be an ad hoc, reactionary approach to creating economic arguments for or against the design, installation or maintenance of natural elements such as green walls, green roofs, streetscapes, and parklands. With this issue in mind, this paper will overview research as part of an industry collaborative research project that considers the potential for using a number of environmental economic valuation techniques that have evolved over the last several decades in agricultural and resource economics, to systematically value the economic value of biophilic elements in the urban context. Considering existing literature on environmental economic valuation techniques, the paper highlights opportunities for creating a standardised language for valuing biophilic elements. The conclusions have implications for expanding the field of environmental economic value to support the economic evaluations and planning of the greater use of natural elements in cities. Insights are also noted for the more mature fields of agricultural and resource economics.
Resumo:
Engineering Your Future: An Australasian Guide, 2nd Edition, is the ideal textbook for undergraduate students beginning their engineering studies. Building on the success of the popular 1st edition, this new edition continues the strong and practical emphasis on skills that are essential for engineering problem-solving and design. Numerous topical and locally focused examples of projects across the broad range of engineering disciplines help to graphically demonstrate the role and responsibilities of a professional engineer. Themes of sustainability, ethical practice and effective communication are constant throughout the text. In addition, its many exercises and project activities will encourage students to put key engineering principles and skills into practice.
Resumo:
Natural design features in the built environment or biophilic elements are emerging as a potential response to the challenges of climate change, urbanisation and population pressures which have invited issues such as rising urban heat island effect, rising pollution, increased congestion, among others. This concept of living cities was made popular by Professor Tim Beatley in his book titled ‘Biophilic Urbanism’. Evidence of biophilic urbanism can be seen in some cities from around the globe since decoupling environmental pressures from future development is a priority on many agendas. Berlin is an example of a modern economy that has adopted an ecological sustainable development approach to reduce environmental degradation while driving innovation and employment.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
A significant reduction in global greenhouse gas (GHG) emissions is a priority, and the preservation of existing building stock presents a significant opportunity to reduce the carbon footprint of our built environment. Within this ‘wicked’ problem context, and moving beyond the ad hoc and incremental performance improvements that have been made to date, collaborative and multidisciplinary efforts are required to find rapid and transformational solutions. Design has emerged as a strategic and redirective practice, and lessons can therefore be learned about transformation and potentially applied in the built environment. The purpose of this paper is to discuss a pragmatic and novel research approach for undertaking such applied design driven research. This paper begins with a discussion of key contributions from design science (rational) and action research (reflective) philosophies in creating an emerging methodological ‘hybrid design approach’. This research approach is then discussed in relation to its application to specific research exploring the processes, methods and lessons from design in heritage building retrofit projects. Drawing on both industry and academic knowledge to ensure relevance and rigour, it is anticipated that the hybrid design approach will be useful for others tackling such complex wicked problems that require context-specific solutions.
Resumo:
The design activities of the development of the SCRAMSPACE I scramjet-powered free-flight experiment are described in this paper. The objectives of this flight are first described together with the definition of the primary, secondary and tertiary experiments. The Scramjet configuration studied is first discussed together with the rocket motor system selected for this flight. The different flight sequences are then explained, highlighting the SCRAMSPACE I free-flyer separation and re-orientation procedures. A design trade-off study is then described considering vehicle stability, packaging, thermo-structural analysis and trajectory, discussing the alignment of the predicted performance with the mission scientific requirements. The global system architecture and instrumentation of the vehicle are then explained. The conclusions of this design phase are that a vehicle design has been produced which is able to meet the mission scientific goals and the procurement & construction of the vehicle are ongoing.
Resumo:
The Design Minds Refresh Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. Inspired by ideas from a design project for second year Interior Design students at QUT School of Design, this toolkit explores, through five distinct exercises, different design tools and ways to approach the future design of environments (bathrooms) to facilitate the daily washing ritual, while addressing diverse and changing social, cultural, technological and environmental challenges. The Design Minds Refresh Toolkit particularly aims to promote ‘Lateral Thinking’ attitudes and empathy as an approach to create unusual and sustainable solutions to future problems that may affect our daily behavioural routines, and the spaces that facilitate them. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ and ‘Ideate’ phases, Exercise 2 and 3 build on ideation skills, and Exercise 4 and 5 concentrate on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 4-5 week program (approximately 10-12 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/refresh/ on the Design Minds website. Exercise 2 (Other People’s Shoes) and Exercise 3 (The Future Bathroom) of the toolkit were used as content for the inaugural Design Minds Professional Development Workshop on June 28, 2012 to pre-launch the website to Queensland teachers.
Resumo:
The Design Minds The Big Picture Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. Inspired by the Unlimited: Designing for the Asia Pacific Generation Workshop 2010 (http://eprints.qut.edu.au/47762/), this toolkit explores, through three distinct exercises, ‘design for the other 90%’, addressing tools and approaches to diverse and changing social, cultural, technological and environmental challenges. The Design Minds The Big Picture Toolkit challenges students to be active agents for change and to think creatively and optimistically about solutions to future global issues that deliver social, economic and environmental benefits. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ phase, Exercise 2 the ‘Inquire’ and ‘Ideate’ phases, and Exercise 3 concentrates on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 4-5 week program (approximately 4-6 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/the-big-picture/ on the Design Minds website.