997 resultados para Watermarking model
Resumo:
The existence of travelling wave solutions to a haptotaxis dominated model is analysed. A version of this model has been derived in Perumpanani et al. (1999) to describe tumour invasion, where diffusion is neglected as it is assumed to play only a small role in the cell migration. By instead allowing diffusion to be small, we reformulate the model as a singular perturbation problem, which can then be analysed using geometric singular perturbation theory. We prove the existence of three types of physically realistic travelling wave solutions in the case of small diffusion. These solutions reduce to the no diffusion solutions in the singular limit as diffusion as is taken to zero. A fourth travelling wave solution is also shown to exist, but that is physically unrealistic as it has a component with negative cell population. The numerical stability, in particular the wavespeed of the travelling wave solutions is also discussed.
Resumo:
We study a version of the Keller–Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave solutions in the small diffusion case that converge to these exact solutions in the singular limit.
Resumo:
Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.
Resumo:
Stagnation-point total heat transfer was measured on a 1:27.7 model of the Flight Investigation of Reentry Environment II flight vehicle. Experiments were performed in the X1 expansion tube at an equivalent flight velocity and static enthalpy of 11 km/s and 12.7 MJ/kg, respectively. Conditions were chosen to replicate the flight condition at a total flight time of 1639.5 s, where radiation contributed an estimated 17-36% of the total heat transfer. This contribution is theorized to reduce to <2% in the scaled experiments, and the heating environment on the test model was expected to be dominated by convection. A correlation between reported flight heating rates and expected experimental heating, referred to as the reduced flight value, was developed to predict the level of heating expected on the test model. At the given flow conditions, the reduced flight value was calculated to be 150 MW/m2. Average stagnation-point total heat transfer was measured to be 140 ± 7% W/m2, showing good agreement with the predicted value. Experimentally measured heat transfer was found to have good agreement of between 5 and 15% with a number of convective heating correlations, confirming that convection dominates the tunnel heating environment, and that useful experimental measurements could be made in weakly coupled radiating flow
Resumo:
Objectives To describe the intervention protocol for the first multilevel ecological intervention for physical activity in retirement communities that addresses individual, interpersonal and community influences on behavior change. Design A cluster randomized controlled trial design was employed with two study arms: a physical activity intervention and an attention control successful aging condition. Setting Sixteen continuing care retirement communities in San Diego County. Participants Three hundred twenty older adults, aged 65 years and older, are being recruited to participate in the trial. In addition, peer leaders are being recruited to lead some study activities, especially to sustain the intervention after study activities ceased. Intervention Participants in the physical activity trial receive individual, interpersonal and community intervention components. The individual level components include pedometers, goal setting and individual phone counseling. The interpersonal level components include group education sessions and peer-led activities. The community level components include resource audits and enumeration, tailored walking maps, and community improvement projects. The successful aging group receives individual and group attention about successful aging topics. Measurements The main outcome is light to moderate physical activity, measured objectively by accelerometry. Other objective outcomes included physical functioning, blood pressure, physical fitness, and cognitive functioning. Self report measures include depressive symptoms and health related quality of life. Results The intervention is being delivered successfully in the communities and compliance rates are high. Conclusion Ecological Models call for interventions that address multiple levels of the model. Previous studies have not included components at each level and retirement communities provide a model environment to demonstrate how to implement such an intervention.
Resumo:
We developed a reproducible model of deep dermal partial thickness burn injury in juvenile Large White pigs. The contact burn is created using water at 92 degrees C for 15s in a bottle with the bottom replaced with plastic wrap. The depth of injury was determined by a histopathologist who examined tissue sections 2 and 6 days after injury in a blinded manner. Upon creation, the circular wound area developed white eschar and a hyperaemic zone around the wound border. Animals were kept for 6 weeks or 99 days to examine the wound healing process. The wounds took between 3 and 5 weeks for complete re-epithelialisation. Most wounds developed contracted, purple, hypertrophic scars. On measurement, the thickness of the burned skin was approximately 1.8 times that of the control skin at week 6 and approximately 2.2 times thicker than control skin at 99 days after injury. We have developed various methods to assess healing wounds, including digital photographic analysis, depth of organising granulation tissue, immunohistochemistry, electron microscopy and tensiometry. Immunohistochemistry and electron microscopy showed that our porcine hypertrophic scar appears similar to human hypertrophic scarring. The development of this model allows us to test and compare different treatments on burn wounds.
Resumo:
We read with great interest the article entitled “Enhancing drugs absorption through third-degree burn wound eschar” by Manafi et al. [1]. The authors addressed the concern of poor penetration of topically applied anti-microbials through burn eschar and detailed the improvement of this penetration by penetration enhancers. Here, we would like to report the poor penetration of a topical agent into the viable deep dermal layer under burn eschar on a porcine burn model [2]. In burn treatment, a common practice is the topical application of either anti-microbial products or wound enhancing agents. While the activity of anti-microbial products is designed to fight against microbes on the wound surface but with the least toxicity to viable tissue, wound enhancing agents need to reach the viable tissue layer under the burn eschar. Many studies have reported the accelerated healing of superficial burn wounds and skin graft donor sites by the topical application of exogeneous growth factors [3]. It is well known that the efficacy of the penetration of a topical agent on intact skin mostly depends on the molecular size of the product [4] and [5]. While burn injury destroys this epidermal physiological barrier, the coagulated burn tissue layer on the burn wound surface makes it difficult for topical agents to reach viable tissue....
Resumo:
In thermal deep-dermal burns, surgical debridement is normally used in conjunction with skin grafting or skin substitutes and debridement alone as a burn treatment is not usually practiced. The current study addresses whether or not debridement alone would enhance burn wound healing on small deep-dermal-partial thickness burns. This was a prospective and blinded experimental trial using a porcine deep-dermal-partial thickness burn model. Four burns, approximately 50 cm(2) in size, were created on each of eight pigs. Two burns from each pig were immediately surgically debrided and the other two were not debrided as the internal control. Hydrate gel together with paraffin gauze were used to cover the burns for four pigs and silver dressings for the other four. Clinical assessment of wound healing was conducted over a 6-week period. Skin samples were collected at the end of the experiment and histopathological evaluation was performed. The results show thinner scar formation and lower scar height in the debrided compared with nondebrided wounds in the hydrate gel/paraffin gauze groups. There were no statistically significant differences in wound healing assessment between the debrided and nondebrided wounds dressed with silver dressings. This study provides supporting evidence that immediate debridement with an appropriate dressing and without skin grafting may promote wound healing, suggesting its potential benefit for clinical patients.
Resumo:
Silver dressings have been widely used to successfully prevent burn wound infection and sepsis. However, a few case studies have reported the functional abnormality and failure of vital organs, possibly caused by silver deposits. The aim of this study was to investigate the serum silver level in the pediatric burn population and also in several internal organs in a porcine burn model after the application of Acticoat. A total of 125 blood samples were collected from 46 pediatric burn patients. Thirty-six patients with a mean of 13.4% TBSA burns had a mean peak serum silver level of 114 microg/L, whereas 10 patients with a mean of 1.85% TBSA burns had an undetectable level of silver (<5.4 microg/L). Overall, serum silver levels were closely related to burn sizes. However, the highest serum silver was 735 microg/L in a 15-month-old toddler with 10% TBSA burns and the second highest was 367 microg/L in a 3-year old with 28% TBSA burns. In a porcine model with 2% TBSA burns, the mean peak silver level was 38 microg/L at 2 to 3 weeks after application of Acticoat and was then significantly reduced to an almost undetectable level at 6 weeks. Of a total of four pigs, silver was detected in all four livers (1.413 microg/g) and all four hearts (0.342 microg/g), three of four kidneys (1.113 microg/g), and two of four brains (0.402 microg/g). This result demonstrated that although variable, the level of serum silver was positively associated with the size of burns, and significant amounts of silver were deposited in internal organs in pigs with only 2% TBSA burns, after application of Acticoat.
Resumo:
This retrospective review examines healing in different sites on a porcine burn model; 24 pairs of burns on 18 pigs from other animal trials were selected for analysis. Each pair of burns was located on the either the cranial or the caudal part of the thoracic ribs region, on the same side of the animal. The burns were 40-50 cm(2) in size and of uniform deep-dermal partial thickness. Caudal burns healed significantly better than cranial burns, demonstrated by earlier closure of wounds, less scar formation and better cosmesis. To our knowledge, this is the first detailed study reporting that burn healing is affected by location on a porcine burn model. We recommend that similar symmetrical burns should be used for future comparative assessments of burn healing.
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
Human lymphatic vascular malformations (LMs), also known as cystic hygromas or lymphangioma, consist of multiple lymphatic endothelial cell-lined lymph-containing cysts. No animal model of this disease exists. To develop a mouse xenograft model of human LM, CD34NegCD31Pos LM lymphatic endothelial cells (LM-LEC) were isolated from surgical specimens and compared to foreskin CD34NegCD31Pos lymphatic endothelial cells (LECs). Cells were implanted into a mouse tissue engineering model for 1, 2 and 4 weeks. In vitro LM-LECs showed increased proliferation and survival under starvation conditions (P < 0.0005 at 48 h, two-way ANOVA), increased migration (P < 0.001, two-way ANOVA) and formed fewer (P = 0.029, independent samples t test), shorter tubes (P = 0.029, independent samples t test) than foreskin LECs. In vivo LM-LECs implanted into a Matrigel™-containing mouse chamber model assembled to develop vessels with dilated cystic lumens lined with flat endothelium, morphology similar to that of clinical LMs. Human foreskin LECs failed to survive implantation. In LM-LEC implanted chambers the percent volume of podoplaninPos vessels was 1.18 ± 2.24 % at 1 week, 6.34 ± 2.68 % at 2 weeks and increasing to 7.67 ± 3.60 % at 4 weeks. In conclusion, the significantly increased proliferation, migration, resistance to apoptosis and decreased tubulogenesis of LM-LECs observed in vitro is likely to account for their survival and assembly into stable LM-like structures when implanted into a mouse vascularised chamber model. This in vivo xenograft model will provide the basis of future studies of LM biology and testing of potential pharmacological interventions for patients with lymphatic malformations.