932 resultados para certificate-based cryptography
Resumo:
Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.
Resumo:
This paper presents an analysis of the stream cipher Mixer, a bit-based cipher with structural components similar to the well-known Grain cipher and the LILI family of keystream generators. Mixer uses a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The analysis is focused on the initialisation function of Mixer and shows that there exist multiple key-IV pairs which, after initialisation, produce the same initial state, and consequently will generate the same keystream. Furthermore, if the number of iterations of the state update function performed during initialisation is increased, then the number of distinct initial states that can be obtained decreases. It is also shown that there exist some distinct initial states which produce the same keystream, resulting in a further reduction of the effective key space
Resumo:
The construction phase of building projects is often a crucial influencing factor in success or failure of projects. Project managers are believed to play a significant role in firms’ success and competitiveness. Therefore, it is important for firms to better understand the demands of managing projects and the competencies that project managers require for more effective project delivery. In a survey of building project managers in the state of Queensland, Australia, it was found that management and information management system are the top ranking competencies required by effective project managers. Furthermore, a significant number of respondents identified the site manager, construction manager and client’s representative as the three individuals whose close and regular contacts with project managers have the greatest influence on the project managers’ performance. Based on these findings, an intra-project workgroups model is proposed to help project managers facilitate more effective management of people and information on building projects.
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
This paper investigates the effects of limited speech data in the context of speaker verification using a probabilistic linear discriminant analysis (PLDA) approach. Being able to reduce the length of required speech data is important to the development of automatic speaker verification system in real world applications. When sufficient speech is available, previous research has shown that heavy-tailed PLDA (HTPLDA) modeling of speakers in the i-vector space provides state-of-the-art performance, however, the robustness of HTPLDA to the limited speech resources in development, enrolment and verification is an important issue that has not yet been investigated. In this paper, we analyze the speaker verification performance with regards to the duration of utterances used for both speaker evaluation (enrolment and verification) and score normalization and PLDA modeling during development. Two different approaches to total-variability representation are analyzed within the PLDA approach to show improved performance in short-utterance mismatched evaluation conditions and conditions for which insufficient speech resources are available for adequate system development. The results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset suggest that the HTPLDA system can continue to achieve better performance than Gaussian PLDA (GPLDA) as evaluation utterance lengths are decreased. We also highlight the importance of matching durations for score normalization and PLDA modeling to the expected evaluation conditions. Finally, we found that a pooled total-variability approach to PLDA modeling can achieve better performance than the traditional concatenated total-variability approach for short utterances in mismatched evaluation conditions and conditions for which insufficient speech resources are available for adequate system development.
Resumo:
This paper investigates the use of the dimensionality-reduction techniques weighted linear discriminant analysis (WLDA), and weighted median fisher discriminant analysis (WMFD), before probabilistic linear discriminant analysis (PLDA) modeling for the purpose of improving speaker verification performance in the presence of high inter-session variability. Recently it was shown that WLDA techniques can provide improvement over traditional linear discriminant analysis (LDA) for channel compensation in i-vector based speaker verification systems. We show in this paper that the speaker discriminative information that is available in the distance between pair of speakers clustered in the development i-vector space can also be exploited in heavy-tailed PLDA modeling by using the weighted discriminant approaches prior to PLDA modeling. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that WLDA and WMFD projections before PLDA modeling can provide an improved approach when compared to uncompensated PLDA modeling for i-vector based speaker verification systems.
Resumo:
In many applications, where encrypted traffic flows from an open (public) domain to a protected (private) domain, there exists a gateway that bridges the two domains and faithfully forwards the incoming traffic to the receiver. We observe that indistringuishability against (adaptive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal in face of active attacks in a public domain, can be essentially relaxed to indistinguishability against chosen-plaintext attacks (IND-CPA) for ciphertexts once they pass the gateway that acts as an IND-CCA/CPA filter by first checking the validity of an incoming IND-CCA ciphertext, then transforming it (if valid) into an IND-CPA ciphertext, and forwarding the latter to the receipient in the private domain. "Non-trivial filtering" can result in reduced decryption costs on the receivers' side. We identify a class of encryption schemes with publicaly verifiable ciphertexts that admit generic constructions of (non-trivial) IND-CCA/CPA filters. These schemes are characterized by existence of public algorithms that can distinguish between valid and invalid ciphertexts. To this end, we formally define (non-trivial) public verifiability of ciphertexts for general encryption schemes, key encapsulation mechanisms, and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss generic transformations and concrete constructions that enjoy this property.
Resumo:
Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.
Resumo:
The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.
Resumo:
his paper formulates an edge-based smoothed conforming point interpolation method (ES-CPIM) for solid mechanics using the triangular background cells. In the ES-CPIM, a technique for obtaining conforming PIM shape functions (CPIM) is used to create a continuous and piecewise quadratic displacement field over the whole problem domain. The smoothed strain field is then obtained through smoothing operation over each smoothing domain associated with edges of the triangular background cells. The generalized smoothed Galerkin weak form is then used to create the discretized system equations. Numerical studies have demonstrated that the ES-CPIM possesses the following good properties: (1) ES-CPIM creates conforming quadratic PIM shape functions, and can always pass the standard patch test; (2) ES-CPIM produces a quadratic displacement field without introducing any additional degrees of freedom; (3) The results of ES-CPIM are generally of very high accuracy.