943 resultados para Swedish model
Resumo:
Carrying capacity assessments model a population’s potential self-sufficiency. A crucial first step in the development of such modelling is to examine the basic resource-based parameters defining the population’s production and consumption habits. These parameters include basic human needs such as food, water, shelter and energy together with climatic, environmental and behavioural characteristics. Each of these parameters imparts land-usage requirements in different ways and varied degrees so their incorporation into carrying capacity modelling also differs. Given that the availability and values of production parameters may differ between locations, no two carrying capacity models are likely to be exactly alike. However, the essential parameters themselves can remain consistent so one example, the Carrying Capacity Dashboard, is offered as a case study to highlight one way in which these parameters are utilised. While examples exist of findings made from carrying capacity assessment modelling, to date, guidelines for replication of such studies in other regions and scales have largely been overlooked. This paper addresses such shortcomings by describing a process for the inclusion and calibration of the most important resource-based parameters in a way that could be repeated elsewhere.
Resumo:
Increasing globalisation and local expansion of Higher Education presents challenges to manage quality of the education services. This study investigated key stakeholders' perspectives on what constitutes key elements and attributes of an effective Quality Assurance (QA) system in Higher Education. The findings highlighted the need for: i) legislation to support a strong QA regulatory framework, ii) independence of the QA agency, iii) development of minimum quality standards through broad stakeholder involvement, and iv) a cyclical approach. The findings of this study proposed a QA model which has implications for strengthening of HE QA systems of Small State.
Resumo:
Despite the importance of destination image in market competitiveness, and the popularity of the field within tourism literature, there remains a dearth of published research examining travellers’ perceptions of destinations in South America. This manuscript addresses this gap by testing a model of consumer-based brand equity (CBBE) associated with three South American countries; Chile, Brazil and Argentina. The introduction of direct air links and a free trade agreement in 2008 has led destination marketing organisations (DMOs) in these countries to increase promotional efforts in the Australian market. This study shows that the CBBE model is an appropriate tool to explore consumers’ attitudes in the long haul travel context. The findings provide DMOs of the three countries studied, with benchmarks against which to compare the impact of future marketing communications in Australia. The results provide increased transparency and accountability to stakeholders, such as South American tourism businesses and Australian travel intermediaries.
Resumo:
Moderation of student assessment is a critical component of teaching and learning in contemporary universities. In Australia, moderation is mandated through university policies and through the new national university accreditation authority, Tertiary Education Quality and Standards Agency which began operations in late January 2012 (TEQSA, 2012). The TEQSA requirement to declare details of moderation and any other arrangements used to support consistency and reliability of assessment and grading across each subject in the course of study is a radical step intended to move toward heightened accountability and greater transparency in the tertiary sector as well as entrenching evidence-based practice in the management of Australian academic programs. In light of this reform, the purpose of this project was to investigate and analyse current moderation practices operating within a faculty of education at a large urban university in Queensland, Australia. This qualitative study involved interviews with the unit coordinators (n=21) and tutors (n=8) of core undergraduate education units and graduate diploma units within the faculty. Four distinct discourses of moderation that academics drew on to discuss their practices were identified in the study. These were: equity, justification, community building, and accountability. These discourses, together with recommendations for changes to moderation practices are discussed in this paper.
Resumo:
A generalised gamma bidding model is presented, which incorporates many previous models. The log likelihood equations are provided. Using a new method of testing, variants of the model are fitted to some real data for construction contract auctions to find the best fitting models for groupings of bidders. The results are examined for simplifying assumptions, including all those in the main literature. These indicate no one model to be best for all datasets. However, some models do appear to perform significantly better than others and it is suggested that future research would benefit from a closer examination of these.
Resumo:
One in five Australian workers believes that work doesn’t fit well with their family and social commitments. Concurrently, organisations are recognising that to stay competitive they need policies and practices that support the multiple aspects of employees’ lives. Many employees work in group environments yet there is currently little group level work-life balance research. This paper proposes a new theoretical framework developed to understand the design of work groups to better facilitate work-life balance. This new framework focuses on task and relational job designs, group structures and processes and workplace culture.
Resumo:
The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage.
Resumo:
Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.
Resumo:
Achieving sustainable urban development is identified as one ultimate goal of many contemporary planning endeavours and has become central to formulation of urban planning policies. Within this concept, land-use and transport integration is highlighted as one of the most important and attainable policy objectives. In many cities, integration is embraced as an integral part of local development plans, and a number of key integration principles are identified. However, the lack of available evaluation methods to measure extent of urban sustainability levels prevents successful implementation of these principles. This paper introduces a new indicator-based spatial composite indexing model developed to measure sustainability performance of urban settings by taking into account land-use and transport integration principles. Model indicators are chosen via a thorough selection process in line with key principles of land-use and transport integration. These indicators are grouped into categories and themes according to their topical relevance. These indicators are then aggregated to form a spatial composite index to portray an overview of the sustainability performance of the pilot study area used for model demonstration. The study results revealed that the model is a practical instrument for evaluating success of local integration policies and visualizing sustainability performance of built environments and useful in both identifying problematic areas as well as formulating policy interventions.
Resumo:
Understanding people's organ donation decisions may narrow the gap between organ supply and demand. In two studies, participants who had not recorded their posthumous organ donation decision (Study 1, N = 210; Study 2, N = 307) completed items assessing prototype/willingness model (PWM; attitude, subjective norm, donor prototype favorability and similarity, willingness) constructs. Attitude, subjective norm, and prototype similarity predicted willingness to donate. Prototype favorability and a Prototype Favorability × Similarity interaction predicted willingness (Study 2). These findings provide support for the PWM in altruistic health contexts, highlighting the importance of people's perceptions about organ donors in their donation decisions.
Resumo:
Given the high prevalence of depression in the community there is urgent need to understand the interpersonal predictors of this disorder. Data from large community samples indicates that a diminished sense of belonging appears to be the most salient and immediate antecedent of a rapid depressive response. Belongingness in the workplace is also very important and associated with depressive symptoms over and above associations attributable to general or community belongingness. Finally it appears that the personality factor of interpersonal sensitivity moderates the relationship between belongingness and depressive symptoms. Results have extensive future implications for the prevention and treatment of depression.
Resumo:
This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution
Resumo:
Zinc oxide (ZnO) that contains non-magnetic ionic dopants, such as nitrogen (N)-doped zinc oxide (ZnO:N), has been observed to exhibit ferromagnetism. Ferromagnetism is proposed to arise from the Coulomb excitation in the localized states that is induced by the oxygen vacancy, V O. A model based on the Coulomb excitation that is associated with the electron–phonon interaction theoretically explains the ferromagnetic mechanism of ZnO:N. This study reveals that the ferromagnetism will be induced by either deep localized states with a small V O concentration or shallow localized states with a high V O concentration. Additionally, electron–phonon coupling either suppresses the ferromagnetism that is induced by the deep donor states of V O or enhances the ferromagnetism that is induced by the shallow donor states of V O.
Resumo:
This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.