146 resultados para zinc ion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkylperoxyl radicals are intermediates in the oxidation Of hydrocarbons. The reactive nature of these intermediates, however, has made therin elusive to direct observation and isolation. We have employed ion trap mass spectrometry to synthesize and characterize 4-carboxylatocyclohexyl radical anions ((center dot)C(6)H(10)-CO(2)(-)) and observe their reactivity in the presence of dioxygen. The resulting reaction is facile (k = 1.8 x 10(-10) cm(3) molecule(-1) s(-1) or 30% of calculated collision rate) and results in (i) the addition Of O(2) to form stabilized 4-carboxylatocyclohexylperoxyl radical anions ((center dot)OO-C(6)H(10)-CO(2)(-)), providing the first direct observation of a cyclohexylperoxyl radical, and (ii) elimination of HO(2)(center dot) and HO(center dot) radicals consistent with recent laser-induced fluorescence studies of the reaction of neutral cyclohexyl radicals with O(2). Electronic structure calculations at the B3LYP/6-31+G(d) level of theory reveal viable pathways for the observed reactions showing that formation of the peroxyl radical is exothermic by 37 kcal mol(-1) with subsequent transition states its low as -6.6 kcal mol(-1) (formation of HO(2)(center dot)) and -9.1 kcal mol(-1) (formation of HO(center dot)) with respect to the entrance channel. The combined computational and experimental data Suggest that the structures of the reaction products correspond to cyclohexenes and epoxides from HO(2)(center dot) and HO(center dot) loss, respectively, while alternative pathways leading to cyclohexanone or ring-opened isomers ate not observed, Activation of the charged peroxyl radical (center dot)OO-C(6)H(10)-CO(2)(-) by collision induced disassociation also results in the loss Of HO(2)(center dot) and HO(center dot) radicals confirming that these products are directly connected to the peroxyl radical intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas phase degradation reactions of the chemical warfare agent (CWA) simulant, dimethyl methylphosphonate (DMMP), with the hydroperoxide anion (HOO(-)) were investigated using a modified quadrupole ion trap mass spectrometer. The HOO(-) anion reacts readily with neutral DMMP forming two significant product ions at m/z 109 and m/z 123. The major reaction pathways correspond to (i) the nucleophilic substitution at carbon to form \[CH(3)P(O)(OCH(3))O](-) (m/z 109) in a highly exothermic process and (ii) exothermic proton transfer. The branching ratios of the two reaction pathways, 89% and 11% respectively, indicate that the former reaction is significantly faster than the latter. This is in contrast to the trend for the methoxide anion with DMMP, where proton transfer dominates. The difference in the observed reactivities of the HOO(-) and CH(3)O(-) anions can be considered as evidence for an a-effect in the gas phase and is supported by electronic structure calculations at the B3LYP/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory that indicate the S(N)2(carbon) process has an activation energy 7.8 kJ mol(-1) lower for HOO(-) as compared to CH(3)O(-). A similar alpha-effect was calculated for nucleophilic addition-elimination at phosphorus, but this process an important step in the perhydrolysis degradation of CWAs in solution - was not observed to occur with DMMP in the gas phase. A theoretical investigation revealed that all processes are energetically accessible with negative activation energies. However, comparison of the relative Arrhenius pre-exponential factors indicate that substitution at phosphorus is not kinetically competitive with respect to the S(N)2(carbon) and deprotonation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of acid rock drainage (ARD) and eutrophication on microbial communities in stream sediments above and below an abandoned mine site in the Adelaide Hills, South Australia, was quantified by PLFA analysis. Multivariate analysis of water quality parameters, including anions, soluble heavy metals, pH, and conductivity, as well as total extractable metal concentrations in sediments, produced clustering of sample sites into three distinct groups. These groups corresponded with levels of nutrient enrichment and/or concentration of pollutants associated with ARD. Total PLFA concentration, which is indicative of microbial biomass, was reduced by >70% at sites along the stream between the mine site and as far as 18 km downstream. Further downstream, however, recovery of the microbial abundance was apparent, possibly reflecting dilution effect by downstream tributaries. Total PLFA was >40% higher at, and immediately below, the mine site (0-0.1 km), compared with sites further downstream (2.5-18 km), even after accounting for differences in specific surface area of different sediment samples. The increased microbial population in the proximity of the mine source may be associated with the presence of a thriving iron-oxidizing bacteria community as a consequence of optimal conditions for these organisms while the lower microbial population further downstream corresponded with greater sediments' metal concentrations. PCA of relative abundance revealed a number of PLFAs which were most influential in discriminating between ARD-polluted sites and the rest of the sites. These PLFA included the hydroxy fatty acids: 2OH12:0, 3OH12:0, 2OH16:0; the fungal marker: 18:2ω6; the sulfate-reducing bacteria marker 10Me16:1ω7; and the saturated fatty acids 12:0, 16:0, 18:0. Partial constrained ordination revealed that the environmental parameters with the greatest bearing on the PLFA profiles included pH, soluble aluminum, total extractable iron, and zinc. The study demonstrated the successful application of PLFA analysis to rapidly assess the toxicity of ARD-affected waters and sediments and to differentiate this response from the effects of other pollutants, such as increased nutrients and salinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customized magnetic traps were developed to produce a domain of dense plasmas with a narrow ion beam directed to a particular area of the processed substrate. A planar magnetron coupled with an arc discharge source created the magnetic traps to confine the plasma electrons and generate the ion beam with the controlled ratio of ion-to-neutral fluxes. Images of the plasma jet patterns and numerical vizualizations help explaining the observed phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid nano-urchin structure consisting of spherical onion-like carbon and MnO2 nanosheets is synthesized by a facile and environmentally-friendly hydrothermal method. Lithium-ion batteries incorporating the hybrid nano-urchin anode exhibit reversible lithium storage with superior specific capacity, enhanced rate capability, stable cycling performance, and nearly 100% Coulombic efficiency. These results demonstrate the effectiveness of designing hybrid nano-architectures with uniform and isotropic structure, high loading of electrochemically-active materials, and good conductivity for the dramatic improvement of lithium storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 10^5 CH3+ ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective method of controlling the growth of vertically aligned carbon nanotube arrays in a lowerature plasma is presented. Ni catalyst was pretreated by plasma immersion ion implantation prior to the nanotube growth by plasma-enhanced chemical vapor deposition. Both the size distribution and the areal density of the catalyst nanoparticles decrease due to the ion-surface interactions. Consequently, the resulting size distribution of the vertically aligned carbon nanotubes is reduced to 50 ∼ 100 nm and the areal density is lowered (by a factor of ten) to 10 8 cm -2, which is significantly different from the very-high-density carbon nanotube forests commonly produced by thermal chemical vapor deposition. The efficiency of this pretreatment is compared with the existing techniques such as neutral gas annealing and plasma etching. These results are highly relevant to the development of the next-generation nanoelectronic and optoelectronic devices that require effective control of the density of nanotube arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advantages of using low-temperature plasma environments for postprocessing of dense nanotube arrays are shown by means of multiscale hybrid numerical simulations. By controlling plasma-extracted ion fluxes and varying the plasma and sheath parameters, one can selectively coat, dope, or functionalize different areas on nanotube surfaces. Conditions of uniform deposition of ion fluxes over the entire nanotube surfaces are obtained for different array densities. The plasma route enables a uniform processing of lateral nanotube surfaces in very dense (with a step-to-height ratio of 1:4) arrays, impossible via the neutral gas process wherein radical penetration into the internanotube gaps is poor. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si3+ and Si1+ ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si1+ ions in a low substrate temperature range (227-327 °C). As low substrate temperatures (≤500 °C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms and the reaction products for the oxidation of sulfide ions in the presence of pyrite have been established. When the leach solution contains free sulfide ions, oxidation occurs via electron transfer from the sulfide ion to dissolved oxygen on the pyrite mineral surface, with polysulfides being formed as an intermediate oxidation product. In the absence of cyanide, the polysulfides are further oxidised to thiosulfate, whilst with cyanide present, thiocyanate and sulfite are also formed from the reaction of polysulfides with cyanide and dissolved oxygen. Polysulfide chain length has been shown to affect the final reaction products of polysulfide oxidation by dissolved oxygen. The rate of pyrite catalysed sulfide ion oxidation was found to be slower in cyanide solutions compared to cyanide free solutions. Mixed potential measurements indicated that the reduction of oxygen at the pyrite surface is hindered in the presence of cyanide. The presence of sulfide ions was also found to activate the pyrite surface, increasing its rate of oxidation by oxygen. This effect was particularly evident in the presence of cyanide; in the presence of sulfide the increase in total sulfur from pyrite oxidation was 2.3 mM in 7 h, compared to an increase of <1 mM in the absence of sulfide over 24 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Monte Carlo simulation technique, we have calculated the distribution of ion current extracted from low-temperature plasmas and deposited onto the substrate covered with a nanotube array. We have shown that a free-standing carbon nanotube is enclosed in a circular bead of the ion current, whereas in square and hexagonal nanotube patterns, the ion current is mainly concentrated along the lines connecting the nearest nanotubes. In a very dense array (with the distance between nanotubes/nanotube-height ratio less than 0.05), the ions do not penetrate to the substrate surface and deposit on side surfaces of the nanotubes.