91 resultados para viral vector
Resumo:
Nucleic acid molecules are championing a new generation of reverse engineered biopharmaceuticals. In terms of potential application in gene medicine, plasmid DNA (pDNA) vectors have exceptional therapeutic and immunological profiles as they are free from safety concerns associated with viral vectors, display non-toxicity and are simpler to develop. This review addresses the potential applications of pDNA molecules in vaccine design/development and gene therapy via recombinant DNA technology as well as a staged delivery mechanism for the introduction of plasmid-borne gene to target cells via the nasal route.
Resumo:
Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.
Resumo:
The three phases of the macroscopic evolution of the HIV infection are well known, but it is still difficult to understand how the cellular-level interactions come together to create this characteristic pattern and, in particular, why there are such differences in individual responses. An 'agent-based' approach is chosen as a means of inferring high-level behaviour from a small set of interaction rules at the cellular level. Here the emphasis is on cell mobility and viral mutations.
Resumo:
The predicted secondary structure of sub-genomic RNA in dengue virus defective interfering (D.I.) particles from patients, or generated in vitro, resembled that of the 3′ and 5′ regions of wild type dengue virus (DENV) genomes. While these structures in the sub-genomic RNA were found to be essential for its replication, their nucleotide sequences were not, so long as any new sequences maintained wild type RNA secondary structure. These observations suggested that these sub-genomic fragments of RNA from dengue viruses were replicated in the same manner as the full length genomes of their wild type, “helper”, viruses and that they probably represent the smallest fragments of DENV RNA that can be replicated during a natural infection. While D.I. particles containing sub-genomic RNA are completely parasitic, the relationship between wild type and D.I. DENV may be symbiotic, with the D.I. particles enhancing the transmission of infectious DENV.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined.
Resumo:
Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.
Resumo:
Background In 2011, a variant of West Nile virus Kunjin strain (WNVKUN) caused an unprecedented epidemic of neurological disease in horses in southeast Australia, resulting in almost 1,000 cases and a 9% fatality rate. We investigated whether increased fitness of the virus in the primary vector, Culex annulirostris, and another potential vector, Culex australicus, contributed to the widespread nature of the outbreak. Methods Mosquitoes were exposed to infectious blood meals containing either the virus strain responsible for the outbreak, designated WNVKUN2011, or WNVKUN2009, a strain of low virulence that is typical of historical strains of this virus. WNVKUN infection in mosquito samples was detected using a fixed cell culture enzyme immunoassay and a WNVKUN- specific monoclonal antibody. Probit analysis was used to determine mosquito susceptibility to infection. Infection, dissemination and transmission rates for selected days post-exposure were compared using Fisher’s exact test. Virus titers in bodies and saliva expectorates were compared using t-tests. Results There were few significant differences between the two virus strains in the susceptibility of Cx. annulirostris to infection, the kinetics of virus replication and the ability of this mosquito species to transmit either strain. Both strains were transmitted by Cx. annulirostris for the first time on day 5 post-exposure. The highest transmission rates (proportion of mosquitoes with virus detected in saliva) observed were 68% for WNVKUN2011 on day 12 and 72% for WNVKUN2009 on day 14. On days 12 and 14 post-exposure, significantly more WNVKUN2011 than WNVKUN2009 was expectorated by infected mosquitoes. Infection, dissemination and transmission rates of the two strains were not significantly different in Culex australicus. However, transmission rates and the amount of virus expectorated were significantly lower in Cx. australicus than Cx. annulirostris. Conclusions The higher amount of WNVKUN2011 expectorated by infected mosquitoes may be an indication that this virus strain is transmitted more efficiently by Cx. annulirostris compared to other WNVKUN strains. Combined with other factors, such as a convergence of abundant mosquito and wading bird populations, and mammalian and avian feeding behaviour by Cx. annulirostris, this may have contributed to the scale of the 2011 equine epidemic.
Resumo:
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.
Resumo:
Background: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy researches, there have been few studies systematically examining various conditions that may affect the determination of the number of viable vector particles in a vector preparation and the use of Multiplicity of Infection (MOI) as a parameter for the prediction of gene transfer events. Methods: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume, target cell number and type, vector decay, variable vector - target cell contact and adsorption periods were studied. MOI between 0-32 was assessed on commonly used cell lines as well as a new cell line. Results: We demonstrated that the resulting values of lentiviral vector titre varied with changes of conditions in the transduction process, including inoculum volume of the vector, the type and number of target cells, vector stability and the length of period of the vector adsorption to target cells. Vector inoculum and the number of target cells determine the frequencies of gene transfer event, although not proportionally. Vector exposure time to target cells also influenced transduction results. Varying these parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock. Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer than a new cell line, FRL 19. Within 0-32 of MOI used transducing four different cell lines, the higher the MOI applied, the higher the efficiency of gene transfer obtained. Conclusion: Several variables in the transduction process affected in in vitro vector titration and resulted in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain range of MOI, it is possible that, if strictly controlled conditions are observed in the vector titration process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated gene transfer events could be predicted. © 2004 Zhang et al; licensee BioMed Central Ltd.
Resumo:
In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
A single lineage of Nicotiana benthamiana is widely used as a model plant1 and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes2,3. These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr14–6. For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species’ natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.