166 resultados para vibro-impact system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of a fear-based personality trait, as conceptualised in Gray’s revised reinforcement sensitivity theory (RST) by the strength of the fight/flight/freeze system (FFFS), on young people’s driving simulator performance under induced psychosocial stress. Seventy-one young drivers completed the Jackson-5 questionnaire of RST traits, followed by a psychosocial stress or relaxation induction procedure (random allocation to groups) and then a city driving simulator task. Some support was found for the hypothesis that higher FFFS sensitivity would result in poorer driving performance under stress, in terms of significantly poorer hazard responses, possibly due to an increased attentional focus on the aversive cues inherent in the stress induction leaving reduced attentional capacity for the driving task. These results suggest that stress may lead to riskier driving behaviour in individuals with fearful RST personality styles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New types of control devices for videogames have emerged and expanded the demographics of the game playing public, yet little is known about which populations of gamers prefer which style of interaction and why. This paper presents data from a study that seeks to clarify the influence the control interface has on the play experience. Three commercial control devices were categorised using an existing typology, according to how the interface maps physical control inputs with the virtual gameplay actions. The devices were then used in a within-groups experimental design aimed at measuring differences in play experience across 64 participants. Descriptive analysis is undertaken on the performance, play experience and preference results for each device. Potential explanations for these results are discussed, as well as the direction of future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste is intrinsic to the fashion system. Fashion is predicated on built-in obsolescence, and as such outmoded garments are rapidly discarded to charity shops or landfill. However, the story of fashion is also one of abundance and extravagance in design ideas. Every season there are new design details – prints, embroidery, embellishments, shapes and textures. This excess of ideas is in itself another form of waste, albeit one that is culturally nourishing. The grave of a fashion garment may also be the grave of a season’s research and creativity. This paper compares the tangible waste of the industry with its intangible waste, namely fashion’s creativity and cultural excess. Fashion’s excess and abundance of trends and ideas makes any move to curb the environmental impact difficult. For all practitioners of fashion – whether designers or consumers – the waste and excess inherent in the fashion system is a difficult ethical terrain to negotiate. However, inverting the wasteful phases of the production cycle can help reframe waste from pollution to a source of nourishment for future practice. While creative excesses of designers may be ‘wasted’ after a season, fashion styles and tropes are recycled and reinvented, with the once passé styles and design ideas from previous years revalorized and returned into the fashion system. Similarly, material garments acquire new value through entering or re-entering the second hand or vintage markets. Design processes can utilise pre or post-consumer textile waste, or eliminate waste through design. In these processes, waste becomes the primary source of nourishment for future fashion cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluating the validity of formative variables has presented ongoing challenges for researchers. In this paper we use global criterion measures to compare and critically evaluate two alternative formative measures of System Quality. One model is based on the ISO-9126 software quality standard, and the other is based on a leading information systems research model. We find that despite both models having a strong provenance, many of the items appear to be non-significant in our study. We examine the implications of this by evaluating the quality of the criterion variables we used, and the performance of PLS when evaluating formative models with a large number of items. We find that our respondents had difficulty distinguishing between global criterion variables measuring different aspects of overall System Quality. Also, because formative indicators “compete with one another” in PLS, it may be difficult to develop a set of measures which are all significant for a complex formative construct with a broad scope and a large number of items. Overall, we suggest that there is cautious evidence that both sets of measures are valid and largely equivalent, although questions still remain about the measures, the use of criterion variables, and the use of PLS for this type of model evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs.