214 resultados para ultrafine particles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numbers of diesel engines in both stationary and mobile applications are increasing nowadays. Diesel engines emit lower Hydrocarbon (HC) and Carbon monoxide (CO) than gasoline engines. However, they can produce more nitrogen oxides (NOx) and have higher particulate matter (PM). On the other hand, emissions standards are getting stringent day by day due to considerable concerns about unregulated pollutants and particularly ultrafine particles deleterious effect on human health. Non-thermal plasma (NTP) treatment of exhaust gas is known as a promising technology for both NOx and PM reduction by introducing plasma inside the exhaust gas. Vehicle exhaust gases undergo chemical changes when exposed to plasma. In this study, the PM removal mechanism using NTP by applying high voltage pulses of up to 20 kVpp with a repetition rate of 10 kHz are investigated. It is found that, voltage increase not necessarily has a positive effect on PM removal in diesel engine emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35×103 mm2. The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child’s activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. Median values were calculated for each category. This review was restricted to papers that presented concentrations numerically. The majority of the reports were based on either CPC or SMPS measurements, with a limited number of papers reporting results from both instruments at the same site. Hence there were several overlaps between the number of CPC and SMPS measuring sites. Most of the studies reported multiple measurements at a given study site, while some studies included results from more than one site. From these reports, the overall median value for each location category was calculated...

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PBDE concentrations are higher in children compared to adults with exposure suggested to include dust ingestion. Besides the home environment, children spend a great deal of time in school classrooms which may be a source of exposure. As part of the “Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH)” project, dust samples (n=28) were obtained in 2011/12 from 10 Brisbane, Australia metropolitan schools and analysed using GC and LC–MS for polybrominated diphenyl ethers (PBDEs) -17, -28, -47, -49, -66, -85, -99, -100, -154, -183, and -209. Σ11PBDEs ranged from 11–2163 ng/g dust; with a mean and median of 600 and 469 ng/g dust, respectively. BDE-209 (range n.d. −2034 ng/g dust; mean (median) 402 (217) ng/g dust) was the dominant congener in most classrooms. Frequencies of detection were 96%, 96%, 39% and 93% for BDE-47, -99, -100 and -209, respectively. No seasonal variations were apparent and from each of the two schools where XRF measurements were carried out, only two classroom items had detectable bromine. PBDE intake for 8–11 year olds can be estimated at 0.094 ng/day BDE-47; 0.187 ng/day BDE-99 and 0.522 ng/day BDE-209 as a result of ingestion of classroom dust, based on mean PBDE concentrations. The 97.5% percentile intake is estimated to be 0.62, 1.03 and 2.14 ng/day for BDEs-47, -99 and -209, respectively. These PBDE concentrations in dust from classrooms, which are higher than in Australian homes, may explain some of the higher body burden of PBDEs in children compared to adults when taking into consideration age-dependant behaviours which increase dust ingestion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 109, 5.1 ± 0.1 × 109, and 3.1 ± 0.6 × 109 part. cm− 3 for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 1010, 5.2 × 1010 and 2.3 × 1010 particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school children’s daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track children’s time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm-3) was 1.08 × 104 for children attending S1, 9.81 × 103 for S2, and 4.19 × 104 for S3. The mean daily NO2 exposure (µg m-3) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Particle number concentrations and size distributions, visibility and particulate mass concentrations and weather parameters were monitored in Brisbane, Australia, on 23 September 2009, during the passage of a dust storm that originated 1400 km away in the dry continental interior. The dust concentration peaked at about mid-day when the hourly average PM2.5 and PM10 values reached 814 and 6460 µg m-3, respectively, with a sharp drop in atmospheric visibility. A linear regression analysis showed a good correlation between the coefficient of light scattering by particles (Bsp) and both PM10 and PM2.5. The particle number in the size range 0.5-20 µm exhibited a lognormal size distribution with modal and geometrical mean diameters of 1.6 and 1.9 µm, respectively. The modal mass was around 10 µm with less than 10% of the mass carried by particles smaller than 2.5 µm. The PM10 fraction accounted for about 68% of the total mass. By mid-day, as the dust began to increase sharply, the ultrafine particle number concentration fell from about 6x103 cm-3 to 3x103 cm-3 and then continued to decrease to less than 1x103 cm-3 by 14h, showing a power-law decrease with Bsp with an R2 value of 0.77 (p<0.01). Ultrafine particle size distributions also showed a significant decrease in number during the dust storm. This is the first scientific study of particle size distributions in an Australian dust storm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the lower strength of pure copper (Cu), ceramic particulate or whisker reinforced Cu matrix composites have attracted wide interest in recent years [1–3]. These materials exhibit a combination of excellent thermal and electrical conductivities, high strength retention at elevated temperatures, and high microstructural stability [3]. The potential applications include various electrodes, electrical switches, and X-ray tube components [4].