144 resultados para sonnolenza, addormentamento, classificatore, SVM, SEM, EEG


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an innovative prognostics model based on health state probability estimation embedded in the closed loop diagnostic and prognostic system. To employ an appropriate classifier for health state probability estimation in the proposed prognostic model, the comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault levels of three faults in HP-LNG pump. Two sets of impeller-rubbing data were employed for the prediction of pump remnant life based on estimation of discrete health state probability using an outstanding capability of SVM and a feature selection technique. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large margin learning approaches, such as support vector machines (SVM), have been successfully applied to numerous classification tasks, especially for automatic facial expression recognition. The risk of such approaches however, is their sensitivity to large margin losses due to the influence from noisy training examples and outliers which is a common problem in the area of affective computing (i.e., manual coding at the frame level is tedious so coarse labels are normally assigned). In this paper, we leverage the relaxation of the parallel-hyperplanes constraint and propose the use of modified correlation filters (MCF). The MCF is similar in spirit to SVMs and correlation filters, but with the key difference of optimizing only a single hyperplane. We demonstrate the superiority of MCF over current techniques on a battery of experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary:  Objective: We performed spike triggered functional MRI (fMRI) in a 12 year old girl with Benign Epilepsy with Centro-temporal Spikes (BECTS) and left-sided spikes. Our aim was to demonstrate the cerebral origin of her interictal spikes. Methods: EEG was recorded within the 3 Tesla MRI. Whole brain fMRI images were acquired, beginning 2–3 seconds after spikes. Baseline fMRI images were acquired when there were no spikes for 20 seconds. Image sets were compared with the Student's t-test. Results: Ten spike and 20 baseline brain volumes were analysed. Focal activiation was seen in the inferior left sensorimotor cortex near the face area. The anterior cingulate was more active during baseline than spikes. Conclusions: Left sided epileptiform activity in this patient with BECTS is associated with fMRI activation in the left face region of the somatosensory cortex, which would be consistent with the facial sensorimotor involvement in BECT seizures. The presence of BOLD signal change in other regions raises the possibility that the scalp recorded field of this patient with BECTs may reflect electrical change in more than one brain region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decline of alertness constitutes a normal physiological phenomenon but could be aggravated when drivers operate in monotonous environments, even in rested individuals. Driving performance is impaired and this increases crash risk due to inattention. This paper aims to show that road characteristics - namely road design (road geometry) and road side variability (signage and buildings) – influence subjective assessment of alertness by drivers. This study used a driving simulator to investigate the drivers’ ability to subjectively detect periods of time when their alertness is importantly reduced by varying road geometry and road environment. Driver’s EEG activity is recorded as a reference to evaluate objectively driver's alertness and is compared to self-reported alertness by participants. Twenty-five participants drove on four different scenarios (varying road design and road environment monotony) for forty minutes. It was observed that participants were significantly more accurate in their assessment before the driving task as compared to after (90% versus 60%). Errors in assessment were largely underestimations of their real alertness rather than over-estimations. The ability to detect low alertness as assessed with an EEG was highly dependent on the road monotony. Scenarios with low roadside variability resulted in high overestimation of the real alertness, which was not observed on monotonous road design. The findings have consequences for road safety and suggest that countermeasures to lapses of alertness cannot rely solely on self-assessment from drivers and road design should reduce environments with low variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Sleepiness is a direct contributor to a substantial proportion of fatal and severe road cashes. A number of technological solutions designed to detect sleepiness have been developed, but self-awareness of increasing sleepiness remains a critical component in on-road strategies for mitigating this risk. In order to take appropriate action when sleepy, drivers’ perceptions of their level of sleepiness must be accurate. Aims: This study aimed to assess capacity to accurately identify sleepiness and self-regulate driving cessation during a validated driving simulator task. Participants: Participants comprised 26 young adult drivers (20-28 years). The drivers had open licenses but no other exclusion criteria where used. Methods: Participants woke at 5am, and took part in a laboratory-based hazard perception driving simulation, either at mid-morning or mid-afternoon. Established physiological measures (including EEG) and subjective measures (sleepiness ratings) previously found sensitive to changes in sleepiness levels were utilised. Participants were instructed to ‘drive’ until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 39 minutes (±18 minutes). Almost all (23/26) of the participants then achieved sleep during the nap opportunity. These data suggest that the participants’ perceptions of sleepiness were specific. However, EEG data from a number of participants suggested very high levels of sleepiness prior to driving cessation, suggesting poor sensitivity. Conclusions: Participants reported high levels of sleepiness while driving after very moderate sleep restriction. They were able to identify increasing sleepiness during the test period, could decide to cease driving and in most cases were sufficiently sleepy to achieve sleep during the daytime session. However, the levels of sleepiness achieved prior to driving cessation suggest poor accuracy in self-perception and regulation. This presents practical issues for the implementation of fatigue and sleep-related strategies to improve driver safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Sleepiness contributes to a substantial proportion of fatal and severe road crashes. Efforts to reduce the incidence of sleep-related crashes have largely focussed on driver education to promote self-regulation of driving behaviour. However, effective self-regulation requires accurate self-perception of sleepiness. The aim of this study was to assess capacity to accurately identify sleepiness, and self-regulate driving cessation, during a validated driving simulator task. Methods: Participants comprised 26 young adult drivers (20-28 years) who had open licenses. No other exclusion criteria where used. Participants were partially sleep deprived (05:00 wake up) and completed a laboratory-based hazard perception driving simulation, counterbalanced to either at mid-morning or mid-afternoon. Established physiological measures (i.e., EEG, EOG) and subjective measures (Karolinska Sleepiness Scale), previously found sensitive to changes in sleepiness levels, were utilised. Participants were instructed to ‘drive’ on the simulator until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 36.1 minutes (±17.7 minutes). Subjective sleepiness increased significantly from the beginning (KSS=6.6±0.7) to the end (KSS=8.2±0.5) of the driving period. No significant differences were found for EEG spectral power measures of sleepiness (i.e., theta or alpha spectral power) from the start of the driving task to the point of cessation of driving. During the nap opportunity, 88% of the participants (23/26) were able to reach sleep onset with an average latency of 9.9 minutes (±7.5 minutes). The average nap duration was 15.1 minutes (±8.1 minutes). Sleep architecture during the nap was predominately comprised of Stages I and II (combined 92%). Discussion: Participants reported high levels of sleepiness during daytime driving after very moderate sleep restriction. They were able to report increasing sleepiness during the test period despite no observed change in standard physiological indices of sleepiness. This increased subjective sleepiness had behavioural validity as the participants had high ‘napability’ at the point of driving cessation, with most achieving some degree of subsequent sleep. This study suggests that the nature of a safety instruction (i.e. how to view sleepiness) can be a determinant of driver behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatio-Temporal interest points are the most popular feature representation in the field of action recognition. A variety of methods have been proposed to detect and describe local patches in video with several techniques reporting state of the art performance for action recognition. However, the reported results are obtained under different experimental settings with different datasets, making it difficult to compare the various approaches. As a result of this, we seek to comprehensively evaluate state of the art spatio- temporal features under a common evaluation framework with popular benchmark datasets (KTH, Weizmann) and more challenging datasets such as Hollywood2. The purpose of this work is to provide guidance for researchers, when selecting features for different applications with different environmental conditions. In this work we evaluate four popular descriptors (HOG, HOF, HOG/HOF, HOG3D) using a popular bag of visual features representation, and Support Vector Machines (SVM)for classification. Moreover, we provide an in-depth analysis of local feature descriptors and optimize the codebook sizes for different datasets with different descriptors. In this paper, we demonstrate that motion based features offer better performance than those that rely solely on spatial information, while features that combine both types of data are more consistent across a variety of conditions, but typically require a larger codebook for optimal performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image representations derived from simplified models of the primary visual cortex (V1), such as HOG and SIFT, elicit good performance in a myriad of visual classification tasks including object recognition/detection, pedestrian detection and facial expression classification. A central question in the vision, learning and neuroscience communities regards why these architectures perform so well. In this paper, we offer a unique perspective to this question by subsuming the role of V1-inspired features directly within a linear support vector machine (SVM). We demonstrate that a specific class of such features in conjunction with a linear SVM can be reinterpreted as inducing a weighted margin on the Kronecker basis expansion of an image. This new viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In condition-based maintenance (CBM), effective diagnostic and prognostic tools are essential for maintenance engineers to identify imminent fault and predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedule of production if necessary. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of bearings based on health state probability estimation and historical knowledge embedded in the closed loop diagnostics and prognostics system. The technique uses the Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation process to provide long term prediction. To validate the feasibility of the proposed model, real life fault historical data from bearings of High Pressure-Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life (RUL). The results obtained were very encouraging and showed that the proposed prognosis system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.