297 resultados para single-spin-asymmetry (SSA)
Resumo:
In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.
Resumo:
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.
Resumo:
This study aimed to explore resilience and wellbeing among a group of eight refugee women originating from several countries (mainly African) and living in Brisbane, most of whom were single mothers. To challenge mostly quantitative and gender-blind explorations of mental health concepts among refugee groups, the project sought an emic and contextual understanding of resilience and wellbeing. Established perspectives, while useful, tend to overlook the complexities of refugee mental health experiences and can neglect the dense nature of individual stories. The purpose of my study was to contest relatively simplistic narratives of mental health constructs that tend to dominate migrant and refugee studies and influence practice paradigms in the human services field. In this ethnographic exploration of mental health constructs conducted in 2008 and 2009, the use of in-depth interviews, participant observations, and visual ethnographic elements provided an opportunity for refugee women to tell their own stories. The participants’ unique narratives of pre- and post-migration experiences, shaped by specific gender, age, social, cultural and political aspects prevailing in their lives, yielded ‘thick’ ethnographic description (Geertz, 1973) of their social worlds. The findings explored in this study, namely language issues, the impact of community dynamics, and the single status of refugee women, clearly demonstrate that mental health constructs are fluid, multifaceted and complex in reality. In fact, language, community dynamics, and being a single mother, represented both opportunities and barriers in the lives of participants. In some contexts, these factors were conducive to resilience and wellbeing, while in other circumstances, these three elements acted as a hindrance to positive mental health outcomes. There are multiple dimensions to the findings, signifying that the social worlds of refugee women cannot be simplified using set definitions and neat notions of resilience and wellbeing. Instead, the intricacies and complexities embedded in the mundane of the everyday highlight novel conceptualisations of resilience and wellbeing. Based on the particular circumstances of single refugee mothers, whose experiences differ from that of married women, this thesis presents novel articulations of mental health constructs, as an alternative view to existing trends in the literature on refugee issues. Rich and multi-dimensional meanings associated with the socio-cultural determinants of mental health emerged in the process. This thesis’ findings highlight a significant gap in diasporic studies as well as simplistic assumptions about refugee women’s resettlement experiences. Single refugee women’s distinct issues are so complex and dense, that a contextual approach is critical to yield accurate depictions of their circumstances. It is therefore essential to understand refugee lived experiences within broader socio-political contexts to truly appreciate the depth of these narratives. In this manner, critical aspects salient to refugee journeys can inform different understandings of resilience, wellbeing and mental health, and shape contemporary policy and human service practice paradigms.
Resumo:
Epoxy-multiwall carbon nanotube nanocomposite thin films were prepared by spin casting. High power air plasma was used to preferentially etch a coating of epoxy and expose the underlying carbon nanotube network. Scanning electron microscopy (SEM) examination revealed well distributed and spatially connected carbon nanotube network in both the longitudinal direction (plasma etched surface) and traverse direction (through-thickness fractured surface). Topographical examination and conductive mode imaging of the plasma etched surface using atomic force microscope (AFM) in the contact mode enabled direct imaging of topography and current maps of the embedded carbon nanotube network. Bundles consisting of at least three single carbon nanotubes form part of the percolating network observed under high resolution current maps. Predominantly non-ohmic response is obtained in this study; behaviour attributed to less than effective polymer material removal when using air plasma etching.
Resumo:
Micro aerial vehicles (MAVs) are a rapidly growing area of research and development in robotics. For autonomous robot operations, localization has typically been calculated using GPS, external camera arrays, or onboard range or vision sensing. In cluttered indoor or outdoor environments, onboard sensing is the only viable option. In this paper we present an appearance-based approach to visual SLAM on a flying MAV using only low quality vision. Our approach consists of a visual place recognition algorithm that operates on 1000 pixel images, a lightweight visual odometry algorithm, and a visual expectation algorithm that improves the recall of place sequences and the precision with which they are recalled as the robot flies along a similar path. Using data gathered from outdoor datasets, we show that the system is able to perform visual recognition with low quality, intermittent visual sensory data. By combining the visual algorithms with the RatSLAM system, we also demonstrate how the algorithms enable successful SLAM.
Resumo:
This thesis concentrates on the characterisation of selected arsenite, antimonite, and hydroxyantimonate minerals based on their vibrational spectra. A number of natural arsenite and antimonite minerals were studied by single crystal Raman spectroscopy in order to determine the contribution of bridging and terminal oxygen atoms to the vibrational spectra. A series of natural hydrated antimonate minerals was also compared and contrasted using single crystal Raman spectroscopy to determine the contribution of the isolated antimonate ion. The single crystal data allows each band in the spectrum to be assigned to a symmetry species. The contribution of bridging and terminal oxygen atoms in the case of the arsenite and antimonite minerals was determined by factor group analysis, the results of which are correlated with the observed symmetry species. In certain cases, synthetic analogues of a mineral and/or synthetic compounds isostructural or related to the mineral of interest were also prepared. These synthetic compounds are studied by non-oriented Raman spectroscopy to further aid band assignments of the minerals of interest. Other characterisation techniques include IR spectroscopy, SEM and XRD. From the single crystal data, it was found that good separation between different symmetry species is observed for the minerals studied.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Player experience of spatiality in first-person, single-player games is informed by the maps and navigational aids provided by the game. This project uses textual analysis to examine the way these maps and navigational aids inform the experience of spatiality in Fallout 3, BioShock and BioShock 2. Spatiality is understood as trialectic, incorporating perceived, conceived and lived space, drawing on the work of Henri Lefebvre and Edward Soja. The most prominent elements of the games’ maps and navigational aids are analysed in terms of how they inform players’ experience of the games’ spaces. In particular this project examines the in-game maps these games incorporate, the waypoint navigation and fast-travel systems in Fallout 3, and the guide arrow and environmental cues in the BioShock games.