338 resultados para single-electron turnstile
Resumo:
A zoisite group of mineral samples from different localities are used in the present study. An EPR study on powdered samples confirms the presence of Mn(II), Fe(III) and Cr(III) in the minerals. NIR studies confirm the presence of these ions in the minerals.
Resumo:
The rural two-lane highway in the southeastern United States is frequently associated with a disproportionate number of serious and fatal crashes and as such remains a focus of considerable safety research. The Georgia Department of Transportation spearheaded a regional fatal crash analysis to identify various safety performances of two-lane rural highways and to offer guidance for identifying suitable countermeasures with which to mitigate fatal crashes. The fatal crash data used in this study were compiled from Alabama, Georgia, Mississippi, and South Carolina. The database, developed for an earlier study, included 557 randomly selected fatal crashes from 1997 or 1998 or both (this varied by state). Each participating state identified the candidate crashes and performed physical or video site visits to construct crash databases with enhance site-specific information. Motivated by the hypothesis that single- and multiple-vehicle crashes arise from fundamentally different circumstances, the research team applied binary logit models to predict the probability that a fatal crash is a single-vehicle run-off-road fatal crash given roadway design characteristics, roadside environment features, and traffic conditions proximal to the crash site. A wide variety of factors appears to influence or be associated with single-vehicle fatal crashes. In a model transferability assessment, the authors determined that lane width, horizontal curvature, and ambient lighting are the only three significant variables that are consistent for single-vehicle run-off-road crashes for all study locations.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
Archaeal transcription utilizes a complex multisubunit RNA polymerase and the basal transcription factors TBP and TF(II)B, closely resembling its eukaryal counterpart. We have uncovered a tight physical and functional interaction between RNA polymerase and the single-stranded DNA-binding protein SSB in Sulfolobus solfataricus. SSB stimulates transcription from promoters in vitro under TBP-limiting conditions and supports transcription in the absence of TBP. SSB also rescues transcription from repression by reconstituted chromatin. We demonstrate the potential for promoter melting by SSB, suggesting a plausible basis for the stimulation of transcription. This stimulation requires both the single-stranded DNA-binding domain and the acidic C-terminal tail of the SSB. The tail forms a stable interaction with RNA polymerase. These data reveal an unexpected role for single-stranded DNA-binding proteins in transcription in archaea.
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair1. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer1. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.
Resumo:
In total, 782 Escherichia coli strains originating from various host sources have been analyzed in this study by using a highly discriminatory single-nucleotide polymorphism (SNP) approach. A set of eight SNPs, with a discrimination value (Simpson's index of diversity [D]) of 0.96, was determined using the Minimum SNPs software, based on sequences of housekeeping genes from the E. coli multilocus sequence typing (MLST) database. Allele-specific real-time PCR was used to screen 114 E. coli isolates from various fecal sources in Southeast Queensland (SEQ). The combined analysis of both the MLST database and SEQ E. coli isolates using eight high-D SNPs resolved the isolates into 74 SNP profiles. The data obtained suggest that SNP typing is a promising approach for the discrimination of host-specific groups and allows for the identification of human-specific E. coli in environmental samples. However, a more diverse E. coli collection is required to determine animal- and environment-specific E. coli SNP profiles due to the abundance of human E. coli strains (56%) in the MLST database.
Resumo:
The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.
Resumo:
The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.
Resumo:
Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.
Resumo:
Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.
Resumo:
The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.
Resumo:
The single crystal Raman spectra of natural mineral schafarzikite FeSb2O4 from the Pernek locality of the Slovak Republic are presented for the first time. Raman spectra of natural mineral apuanite Fe2+Fe43+Sb4O12S, originating from the Apuan Alps in Italy, as well as spectra of synthetic ZnSb2O4 and arsenite mineral trippkeite CuAs2O4 are also presented for the first time. The spectra of the antimonite minerals are characterized by a strong band in the region 660 – 680 cm-1 with shoulders on either side, and a band of medium intensity near 300 cm-1. The spectrum of the arsenite mineral is characterized by a medium band near 780 cm-1 with a shoulder on the high wavenumber side and a strong band at 370 cm-1. Assignments are proposed based on the spectral comparison between the compounds, symmetry modes of the bands and prior literature. The single crystal spectra of schafarzikite showed good mode separation, allowing bands to be assigned a symmetry species of A1g, B1g, B2g or Eg.
Resumo:
Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.
Resumo:
INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.