152 resultados para sensor grid database system
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
This paper proposes the use of battery energy storage (BES) system for the grid-connected doubly fed induction generator (DFIG). The BES would help in storing/releasing additional power in case of higher/lower wind speed to maintain constant grid power. The DC link capacitor is replaced with the BES system in a DFIG-based wind turbine to achieve the above-mentioned goal. The control scheme is modified and the co-ordinated tuning of the associated controllers to enhance the damping of the oscillatory modes is presented using bacterial foraging technique. The results from eigenvalue analysis and the time domain simulation studies are presented to elucidate the effectiveness of the BES systems in maintaining the grid stability under normal operation.
Resumo:
Intelligent Tutoring Systems (ITSs) are computer systems designed to provide individualised help to students, learning in a problem solving context. The difference between an ITS and a Computer Assisted Instruction (CAI) system is that an ITS has a Student Model which allows it to provide a better educational environment. The Student Model contains information on what the student knows, and does not know, about the domain being learnt, as well as other personal characteristics such as preferred learning style. This research has resulted in the design and development of a new ITS: Personal Access Tutor (PAT). PAT is an ITS that helps students to learn Rapid Application Development in a database environment. More specifically, PAT focuses on helping students to learn how to create forms and reports in Microsoft Access. To provide an augmented learning environment, PAT’s architecture is different to most other ITSs. Instead of having a simulation, PAT uses a widelyused database development environment (Microsoft Access). This enables the students to ask for help, while developing real applications using real database software. As part of this research, I designed and created the knowledge base required for PAT. This contains four models: the domain, student, tutoring and exercises models. The Instructional Expert I created for PAT provides individualised help to the students to help them correctly finish each exercise, and also proposes the next exercise that a student should work on. PAT was evaluated by students enrolled in the Databases subject at QUT, and by staff members involved in teaching the subject. The results of the evaluation were positive and are discussed in the thesis.
Resumo:
The development of an intelligent plug-in electric vehicle (PEV) network is an important research topic in the smart grid environment. An intelligent PEV network enables a flexible control of PEV charging and discharging activities and hence PEVs can be utilized as ancillary service providers in the power system concerned. Given this background, an intelligent PEV network architecture is first developed, and followed by detailed designs of its application layers, including the charging and discharging controlling system, mobility and roaming management, as well as communication mechanisms associated. The presented architecture leverages the philosophy in mobile communication network buildup
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
This chapter presents a comparative survey of recent key management (key distribution, discovery, establishment and update) solutions for wireless sensor networks. We consider both distributed and hierarchical sensor network architectures where unicast, multicast and broadcast types of communication take place. Probabilistic, deterministic and hybrid key management solutions are presented, and we determine a set of metrics to quantify their security properties and resource usage such as processing, storage and communication overheads. We provide a taxonomy of solutions, and identify trade-offs in these schemes to conclude that there is no one-size-fits-all solution.
Resumo:
Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pairwise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighboring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools.
Resumo:
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.
Resumo:
RatSLAM is a navigation system based on the neural processes underlying navigation in the rodent brain, capable of operating with low resolution monocular image data. Seminal experiments using RatSLAM include mapping an entire suburb with a web camera and a long term robot delivery trial. This paper describes OpenRatSLAM, an open-source version of RatSLAM with bindings to the Robot Operating System framework to leverage advantages such as robot and sensor abstraction, networking, data playback, and visualization. OpenRatSLAM comprises connected ROS nodes to represent RatSLAM’s pose cells, experience map, and local view cells, as well as a fourth node that provides visual odometry estimates. The nodes are described with reference to the RatSLAM model and salient details of the ROS implementation such as topics, messages, parameters, class diagrams, sequence diagrams, and parameter tuning strategies. The performance of the system is demonstrated on three publicly available open-source datasets.
Resumo:
On average, 560 fatal run-off-road crashes occur annually in Australia and 135 in New Zealand. In addition, there are more than 14,000 run-off-road crashes causing injuries each year across both countries. In rural areas, run-off-road casualty crashes constitute 50-60% of all casualty crashes. Their severity is particularly high with more than half of those involved sustaining fatal or serious injuries. This paper reviews the existing approach to roadside hazard risk assessment, selection of clear zones and hazard treatments. It proposes a modified approach to roadside safety evaluation and management. It is a methodology based on statistical modelling of run-off-road casualty crashes, and application of locally developed crash modification factors and severity indices. Clear zones, safety barriers and other roadside design/treatment options are evaluated with a view to minimise fatal and serious injuries – the key Safe System objective. The paper concludes with a practical demonstration of the proposed approach. The paper is based on findings from a four-year Austroads research project into improving roadside safety in the Safe System context.
Resumo:
Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.