337 resultados para renewable energy systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant increase in installation of rooftop Photovoltaic (PV) in the Low-Voltage (LV) residential distribution network has resulted in over voltage problems. Moreover, increasing peak demand creates voltage dip problems and make voltage profile even worse. Utilizing the reactive power capability of PV inverter (RCPVI) can improve the voltage profile to some extent. Resistive caharcteristic (higher R/X ratio) limits the effectiveness of reactive power to provide voltage support in distribution network. Battery Energy Storage (BES), whereas, can store the excess PV generation during high solar insolation time and supply the stored energy back to the grid during peak demand. A coordinated algorithm is developed in this paper to use the reactive capability of PV inverter and BES with droop control. Proposed algorithm is capable to cater the severe voltage violation problem using RCPVI and BES. A signal flow is also mentioned in this research work to ensure smooth communication between all the equipments. Finally the developed algorithm is validated in a test distribution network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of Electric Energy Storage (EES) integrated with Renewable Energy Resources (RER) has increased use of optimum scheduling strategy in distribution systems. Optimum scheduling of EES can reduce cost of purchased energy by retailers while improve the reliability of customers in distribution system. This paper proposes an optimum scheduling strategy for EES and the evaluation of its impact on reliability of distribution system. Case study shows the impact of the proposed strategy on reliability indices of a distribution system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loading margin sensitivity (LMS) has been widely used in applications in the realm of voltage stability assessment and control. Typically, LMS is derived based on system equilibrium equations near bifurcation and therefore requires full detailed system model and significant computation effort. Availability of phasor measurement units (PMUs) due to the recent development of wide-area monitoring system (WAMS) provides an alternative computation-friendly approach for calculating LMS. With such motivation, this work proposes measurement-based wide-area loading margin sensitivity (WALMS) in bulk power systems. The proposed sensitivity, with its simplicity, has great potential to be embedded in real-time applications. Moreover, the calculation of the WALMS is not limited to low voltage near bifurcation point. A case study on IEEE 39-bus system verifies the proposed sensitivity. Finally, a voltage control scenario demonstrates the potential application of the WALMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador: