180 resultados para partial differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we analyse bifurcations from stationary stable spots to travelling spots in a planar three-component FitzHugh-Nagumo system that was proposed previously as a phenomenological model of gas-discharge systems. By combining formal analyses, center-manifold reductions, and detailed numerical continuation studies, we show that, in the parameter regime under consideration, the stationary spot destabilizes either through its zeroth Fourier mode in a Hopf bifurcation or through its first Fourier mode in a pitchfork or drift bifurcation, whilst the remaining Fourier modes appear to create only secondary bifurcations. Pitchfork bifurcations result in travelling spots, and we derive criteria for the criticality of these bifurcations. Our main finding is that supercritical drift bifurcations, leading to stable travelling spots, arise in this model, which does not seem possible for its two-component version.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of travelling wave solutions to a haptotaxis dominated model is analysed. A version of this model has been derived in Perumpanani et al. (1999) to describe tumour invasion, where diffusion is neglected as it is assumed to play only a small role in the cell migration. By instead allowing diffusion to be small, we reformulate the model as a singular perturbation problem, which can then be analysed using geometric singular perturbation theory. We prove the existence of three types of physically realistic travelling wave solutions in the case of small diffusion. These solutions reduce to the no diffusion solutions in the singular limit as diffusion as is taken to zero. A fourth travelling wave solution is also shown to exist, but that is physically unrealistic as it has a component with negative cell population. The numerical stability, in particular the wavespeed of the travelling wave solutions is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a version of the Keller–Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave solutions in the small diffusion case that converge to these exact solutions in the singular limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the Successive Over Relaxation method. The study is focused on studying the flow pattern and the convective and radiative heat transfer rates are studied for different values of radiation parameters namely, the optical thickness of the fluid, scattering albedo, and the Planck number. It was found that in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we study the azimuthal shear deformations in a compressible Isotropic elastic material. This class of deformations involves an azimuthal displacement as a function of the radial and axial coordinates. The equilibrium equations are formulated in terms of the Cauchy-Green strain tensors, which form an overdetermined system of partial differential equations for which solutions do not exist in general. By means of a Legendre transformation, necessary and sufficient conditions for the material to support this deformation are obtained explicitly, in the sense that every solution to the azimuthal equilibrium equation will satisfy the remaining two equations. Additionally, we show how these conditions are sufficient to support all currently known deformations that locally reduce to simple shear. These conditions are then expressed both in terms of the invariants of the Cauchy-Green strain and stretch tensors. Several classes of strain energy functions for which this deformation can be supported are studied. For certain boundary conditions, exact solutions to the equilibrium equations are obtained. © 2005 Society for Industrial and Applied Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of front solutions in a three-component reaction–diffusion system via a combination of geometric singular perturbation theory, Evans function analysis, and center manifold reduction. The reduced system exhibits a surprisingly complicated bifurcation structure including a butterfly catastrophe. Our results shed light on numerically observed accelerations and oscillations and pave the way for the analysis of front interactions in a parameter regime where the essential spectrum of a single front approaches the imaginary axis asymptotically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose in this paper a new method for the mapping of hippocampal (HC) surfaces to establish correspondences between points on HC surfaces and enable localized HC shape analysis. A novel geometric feature, the intrinsic shape context, is defined to capture the global characteristics of the HC shapes. Based on this intrinsic feature, an automatic algorithm is developed to detect a set of landmark curves that are stable across population. The direct map between a source and target HC surface is then solved as the minimizer of a harmonic energy function defined on the source surface with landmark constraints. For numerical solutions, we compute the map with the approach of solving partial differential equations on implicit surfaces. The direct mapping method has the following properties: (1) it has the advantage of being automatic; (2) it is invariant to the pose of HC shapes. In our experiments, we apply the direct mapping method to study temporal changes of HC asymmetry in Alzheimer's disease (AD) using HC surfaces from 12 AD patients and 14 normal controls. Our results show that the AD group has a different trend in temporal changes of HC asymmetry than the group of normal controls. We also demonstrate the flexibility of the direct mapping method by applying it to construct spherical maps of HC surfaces. Spherical harmonics (SPHARM) analysis is then applied and it confirms our results on temporal changes of HC asymmetry in AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed convection laminar two-dimensional boundary-layer flow of non-Newtonian pseudo-plastic fluids is investigated from a horizontal circular cylinder with uniform surface heat flux using a modified power-law viscosity model, that contains no unrealistic limits of zero or infinite viscosity; consequently, no irremovable singularities are introduced into boundary-layer formulations for such fluids. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning fluids in terms of the fluid temperature distributions, rate of heat transfer in terms of the local Nusselt number.