168 resultados para other numerical approaches
Resumo:
We report on an accurate numerical scheme for the evolution of an inviscid bubble in radial Hele-Shaw flow, where the nonlinear boundary effects of surface tension and kinetic undercooling are included on the bubble-fluid interface. As well as demonstrating the onset of the Saffman-Taylor instability for growing bubbles, the numerical method is used to show the effect of the boundary conditions on the separation (pinch-off) of a contracting bubble into multiple bubbles, and the existence of multiple possible asymptotic bubble shapes in the extinction limit. The numerical scheme also allows for the accurate computation of bubbles which pinch off very close to the theoretical extinction time, raising the possibility of computing solutions for the evolution of bubbles with non-generic extinction behaviour.
Resumo:
Current literature warns organisations about a global ageing phenomenon. Workplace ageing is causing a diminishing work pool which has consequences for a sustainable workforce in the future. This phenomenon continues to impact on local government councils in Australia. Australia has one of the world’s most rapidly ageing populations, and there is evidence that Australian local government councils are already resulting in an unsustainable workforce. Consequently, this research program investigated the role of older workers in the Queensland local government workplace in enabling them to extend their working lives towards transitional employment and a sustainable workforce in the future. Transitional Employment is intended as a strategy for enabling individuals to have greater control over their employment options and their employability during the period leading to their final exit from the workforce. There was no evidence of corporate support for older workers in Queensland local government councils other than tokenistic government campaigns encouraging organisations to "better value their older workers". (Queensland Government, 2007d, p.6). TE is investigated as a possible intervention for older workers in the future. The international and national literature review reflected a range of matters impacting on current older workers in the workforce and barriers preventing them from accessing services towards extending their employment beyond the traditional retirement age (60 years) as defined by the Australian Government; an age when individuals can access their superannuation. Learning and development services were identified as one of those barriers. There was little evidence of investment in or consistent approaches to supporting older workers by organisations. Learning and development services appeared at best to be ad hoc, reactive to corporate productivity and outputs with little recognition of the ageing phenomenon (OECD, 2006, p.23) and looming skills and labour shortages (ALGA, 2006, p. 19). Themes from the literature review led to the establishment of three key research questions: 1. What are the current local government workforce issues impacting on skills and labour retention? 2. What are perceptions about the current workplace environment? And, 3. What are the expectations about learning and development towards extending employability of older workers within the local government sector? The research questions were explored by utilising three qualitative empirical studies, using some numerical data for reporting and comparative analysis. Empirical Study One investigated common themes for accessing transitional employment and comprised two phases. A literature review and Study One data analysis enabled the construction of an initial Transitional Employment Model which includes most frequent themes. Empirical Study Two comprised focus groups to further consider those themes. This led to identification of issues impacting the most on access to learning and development by older workers and towards a revised TEM. Findings presented majority support for transitional employment as a strategy for supporting older workers to work beyond their traditional retirement age. Those findings are presented as significant issues impacting on access to transitional employment within the final 3-dimensionsal TEM. The model is intended as a guide for responding to an ageing workforce by local government councils in the future. This study argued for increased and improved corporate support, particularly for learning and development services for older workers. Such support will enable older workers to maintain their employability and extend their working lives; a sustainable workforce in the future.
Resumo:
Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.
Resumo:
Despite growing recognition of creativity's importance for young people, the creativity of adolescents remains a neglected field of study. Hence, grounded theory research was conducted with 20 adolescents from two Australian schools regarding their self-reported experiences of creativity in diverse domains. Four approaches to the creative process – adaptation, transfer, synthesis, and genesis – emerged from the research. These approaches used by students across a range of domains contribute to the literature in two key ways: (a) explaining how adolescents engage in the creative process, theorised from adolescent creators’ self-reports of their experiences and (b) confirms hybrid theories that recognise that creativity has elements of both domain-generality and domain-specificity. The findings have educational implications for both students and teachers. For students, enhancing metacognitive awareness of their preferred approaches to creativity was reported as a valuable experience in itself, and might also enable adolescents to expand their creativity through experimenting with other ways of engaging in the creative process. For teachers, using these understandings to underpin their pedagogies can promote metacognitive awareness and experimentation, and also provide teachers with a framework for assessing students’ creative processes.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
The recent advances in the understanding of the pathogenesis of ovarian cancer have been helpful in addressing issues in diagnosis, prognosis and management. The study of ovarian tumours by novel techniques such as immunohistochemistry, fluorescent in situ hybridisation, comparative genomic hybridisation, polymerase chain reaction and new tumour markers have aided the evaluation and application of new concepts into clinical practice. The correlation of novel surrogate tumour specific features with response to treatment and outcome in patients has defined prognostic factors which may allow the future design of tailored therapy based on a molecular profile of the tumour. These have also been used to design new approaches to therapy such as antibody targeting and gene therapy. The delineation of roles of c-erbB2, c-fms and other novel receptor kinases in the pathogenesis of ovarian cancer has led initially to the development of anti-c-erbB2 monoclonal antibody therapy. The discovery of BRCA1 and BRCA2 genes will have an impact in the diagnosis and the prevention of familial ovarian cancer. The important role played by recessive genes such as p53 in cancer has raised the possibility of restoration of gene function by gene therapy. Although the pathological diagnosis of ovarian cancer is still confirmed principally on morphological features, addition of newer investigations will increasingly be useful in addressing difficult diagnostic problems. The increasingly rapid pace of discovery of genes important in disease, makes it imperative that the evaluation of their contribution in the pathogenesis of ovarian cancer is undertaken swiftly, thus improving the overall management of patients and their outcome.
Resumo:
Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.
Resumo:
Forming peer alliances to share and build knowledge is an important aspect of community arts practice, and these co-creation processes are increasingly being mediated by the internet. This paper offers guidance for practitioners who are interested in better utilising the internet to connect, share, and make new knowledge. It argues that new approaches are required to foster the organising activities that underpin online co-creation, building from the premise that people have become increasingly networked as individuals rather than in groups (Rainie and Wellman 2012: 6), and that these new ways of connecting enable new modes of peer-to-peer production and exchange. This position advocates that practitioners move beyond situating the internet as a platform for dissemination and a tool for co-creating media, to embrace its knowledge collaboration potential. Drawing on a design experiment I developed to promote online knowledge co-creation, this paper suggests three development phases – developing connections, developing ideas, and developing agility – to ground six methods. They are: switching and routing, engaging in small trades of ideas with networked individuals; organising, co-ordinating networked individuals and their data; beta-release, offering ‘beta’ artifacts as knowledge trades; beta-testing, trialing and modifying other peoples ‘beta’ ideas; adapting, responding to technological disruption; and, reconfiguring, embracing opportunities offered by technological disruption. These approaches position knowledge co-creation as another capability of the community artist, along with co-creating art and media.
Resumo:
In the 21st century, it has become apparent that ‘knowledge’ is a major factor of postmodern production (Yigitcanlar et al., 2007). Beyond this, in today’s rapidly globalizing world, knowledge, along with the social and technological settings, is seen as a key to secure economic prosperity and quality of life (Yigitcanlar et al., 2008a). However, limiting the benefits of a ‘knowledge-based development’ to only economic gains—and to a degree to social ones—is quite a narrow sighted view (Yigitcanlar et al., 2008b). Thus, the concept of ‘knowledge-based urban development’ is coined to bring economic prosperity, environmental sustainability, a just socio-spatial order and good governance to cities, and as a result producing a purposefully designed city—i.e., ‘knowledge city’—generating positive environmental and governance outcomes as well as economic and societal ones (Yigitcanlar, 2011; Carrillo et al., 2014).
Resumo:
Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways is responsible for the formation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Altered eicosanoid expression levels are commonly observed during tumour development and progression of a range of malignancies, including non-small cell lung cancer (NSCLC). Arachidonic acid-derived eicosanoids affect a range of biological phenomena to modulate tumour processes such as cell growth, survival, angiogenesis, cell adhesion, invasion and migration and metastatic potential. Numerous studies have demonstrated that eicosanoids modulate NSCLC development and progression, while targeting these pathways has generally been shown to inhibit tumour growth/progression. Modulation of these arachidonic acid-derived pathways for the prevention and/or treatment of NSCLC has been the subject of significant interest over the past number of years, with a number of clinical trials examining the potential of COX and LOX inhibitors in combination with traditional and novel molecular approaches. However, results from these trials have been largely disappointing. Furthermore, enthusiasm for the use of selective COX-2 inhibitors for cancer prevention/treatment waned, due to their association with adverse cardiovascular events in chemoprevention trials. While COX and LOX targeting may both retain promise for NSCLC prevention and/or treatment, there is an urgent need to understand the downstream signalling mechanisms through which these and other arachidonic acid-derived signalling pathways mediate their effects on tumourigenesis. This will allow for development of safer and potentially more effective strategies for NSCLC prevention and/or treatment. Chemoprevention studies with PGI2 analogues have demonstrated considerable promise, while binding to/signalling through PGE2 receptors have also been the subject of interest for NSCLC treatment. In this chapter, the role of the eicosanoid signalling pathways in non-small cell lung cancer will be discussed. In particular, the effect of the eicosanoids on tumour cell proliferation, their roles in induction of cell death, effects on angiogenesis, migration, invasion and their regulation of the immune response will be assessed, with signal transduction pathways involved in these processes also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of NSCLC will be outlined. Elucidating the molecular mechanisms underlying the effects of specific or general arachidonic acid pathway modulators may lead to the design of biologically and pharmacologically targeted therapeutic strategies for NSCLC prevention/treatment, which may be used alone or in combination with conventional therapies.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.
Resumo:
Measuring Earth material behaviour on time scales of millions of years transcends our current capability in the laboratory. We review an alternative path considering multiscale and multiphysics approaches with quantitative structure-property relationships. This approach allows a sound basis to incorporate physical principles such as chemistry, thermodynamics, diffusion and geometry-energy relations into simulations and data assimilation on the vast range of length and time scales encountered in the Earth. We identify key length scales for Earth systems processes and find a substantial scale separation between chemical, hydrous and thermal diffusion. We propose that this allows a simplified two-scale analysis where the outputs from the micro-scale model can be used as inputs for meso-scale simulations, which then in turn becomes the micro-model for the next scale up. We present two fundamental theoretical approaches to link the scales through asymptotic homogenisation from a macroscopic thermodynamic view and percolation renormalisation from a microscopic, statistical mechanics view.
Resumo:
Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.
Resumo:
Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. Mass spectrometry (MS)-driven proteomics uniquely allows for the detection, identification and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review we describe applications of this technology in KLK biomarker discovery, and elucidate MS-based techniques which have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis and therapies.