142 resultados para nanofiber membranes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0–5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [35S]GTPS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated 35[S]GTPS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS: The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE: In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To develop a novel 3-D cell culture model with the view to studying the pathomechanisms underlying the development of age-related macular degeneration (AMD). Our central hypothesis is that the silk structural protein fibroin used in conjunction with cultured human cells can be used to mimic the structural relationships between the RPE and choriocapillaris in health and disease. Methods Co-cultures of human RPE cells (ARPE-19 cells grown in Miller’s medium) and microvascular endothelial cells (HMEC-1 cells grown in endothelial culture medium) were established on opposing sides of a synthetic Bruch’s membrane (3 microns thick) constructed from B mori silk fibroin. Cell attachment was facilitated by pre-coating the fibroin membrane with vitronectin (for ARPE-19 cells) and gelatin (for HMEC-1 cells) respectively. The effects of tropoelastin on attachment of ARPE-19 cells was also examined. Barrier function was examined by measurement of trans-epithelial resistance (TER) using a voltohmmeter (EVOM-2). The phagocytic activity of the synthetic RPE was tested using vitronectin-coated microspheres (2 micron diameter FluoSpheres). In some cultures, membrane defects were created by puncturing within a 24 G needle. The architecture of the synthetic tissue before and after wounding was examined by confocal microscopy after staining for ZO-1 and F-actin. Results The RPE layer of the 3D model developed a cobblestoned morphology (validated by staining for ZO-1 and F-actin), displayed barrier function (validated by measurement of TER) and demonstrated cytoplasmic uptake of vitronectin-coated microspheres. Attachment of ARPE-19 cells to fibroin was unaffected by tropoelastin. Microvascular endothelial cells attached well to the gelatin-coated surface of the fibroin membrane and remained physically separated from the overlaying RPE layer. The fibroin membranes were amenable to puncturing without collapse thus providing the opportunity to study transmembrane migration of the endothelial cells. Conclusions Synthetic Bruch’s membranes constructed from silk fibroin, vitronectin and gelatin, support the co-cultivation of RPE cells and microvascular endothelial cells. The resulting RPE layer displays functions similar to that of native RPE and the entire tri-layered structure displays potential to be used as an in vitro model of choroidal neovascularization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have presently evaluated membranes prepared from Bombyx mori silk fibroin (BMSF), for their potential use as a prosthetic Bruch’s membrane and carrier substrate for human retinal pigment epithelial (RPE) cell transplantation. Porous BMSF membranes measuring 3 μm in thickness were prepared from aqueous solutions (3% w/v) containing poly(ethylene oxide) (0.09%). The permeability coefficient for membranes was between 3 and 9 × 10-5 cm/s by using Allura red or 70 kDa FITC-dextran respectively. Average pore size (± sd) was 4.9 ± 2.3 µm and 2.9 ± 1.5 µm for upper and lower membrane surfaces respectively. Optimal attachment of ARPE-19 cells to BMSF membrane was achieved by pre-coating with vitronectin (1 µg/mL). ARPE-19 cultures maintained in low serum on BMSF membranes for approximately 8 weeks, developed a cobble-stoned morphology accompanied by a cortical distribution of F-actin and ZO-1. Similar results were obtained using primary cultures of human RPE cells, but cultures took noticeably longer to establish on BMSF compared with tissue culture plastic. These findings encourage further studies of BMSF as a substrate for RPE cell transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3-hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle-to-collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways - both conventional and unconventional - and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solar thermal membrane distillation pilot plant was operated for over 70 days in field conditions. The pilot plant incorporated a single spiral wound permeate gap membrane distillation style of module. All energy used to operate the unit was supplied by solar hot water collectors and photovoltaic panels. The process was able to produce a distillate stream of product water with a conductivity less than 10 µS/cm. Feed water concentration varied from 2,400 µS/cm to 106,000 µS/cm. The process is expected to find application in the production of drinking water for remote island and arid regions without the consumption of electrical energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300 % in 1h and ~ 40 % degradation during 30 d study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The silk protein fibroin provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial cells (Tissue Eng A. 14(2008)1203-11). We presently extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Methods: Primary cultures of HLS cells were established in DMEM/F12 medium supplemented with either 10% fetal bovine serum (FBS) or 2% B27 supplement. Defined keratinocyte serum-free medium (DK-SFM, Invitrogen) was also tested. The resulting cultures were analysed by flow cytometry for expression of CD34, CD90, CD45, and CD141. Cultures grown under each condition were subsequently passaged either onto transparent fibroin membranes prepared from purified fibroin or within 3D scaffolds prepared from partially-solubilised fibroin. Results: HLS cultures were successfully established under each condition, but grew more slowly and passaged poorly in the absence of serum. Cultures grown in 10% FBS were <0.5% CD34+ (keratocytes) and >97% CD90+ (fibroblasts). Cultures established in 2% B27 formed floating spheres and contained >8% CD34+ cells and reduced CD90 expression. Cultures established in DK-SFM displayed traces of epithelial cell growth (CD141), but mostly consisted of CD90+ cells with <1% CD34+ cells. Cells of bone marrow lineage (CD45) were rarely observed under any conditions. Cultures grown in 10% FBS were able to adhere to and proliferate on silk fibroin 3-D scaffolds and transparent films while those grown serum-free could not. Adhesion of HLS cells to fibroin was initially poorer than that displayed on tissue culture plastic. Conclusions: HLS cultures containing cells of predominantly fibroblast lineage can be grown on fibroin-based materials, but this process is dependent upon additional ECM factors such as those provided by serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is a forward study of alumina nanofiber material in developing its applications biology field. It demonstrates that by applying proper modification strategy, alumina nanofiber is a promising material in protein purification and enzyme immobilization. The hydrophobic modification has dramatically improved the rejecting of protein molecular in purification system. On the other hand, utilisation of cross-linking agent firmly combined alumina nanofiber and target enzyme for immobilisation purpose. This step of progress could lead to inspiration of alumina nanofiber’s application in various area.