580 resultados para multi-modal interaction
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
CubIT is a multi-user, large-scale presentation and collaboration framework installed at the Queensland University of Technology’s (QUT) Cube facility, an interactive facility made up 48 multi-touch screens and very large projected display screens. The CubIT system allows users to upload, interact with and share their own content on the Cube’s display surfaces. This paper outlines the collaborative features of CubIT which are implemented via three user interfaces, a large-screen multi-touch interface, a mobile phone and tablet application and a web-based content management system. Each of these applications plays a different role and supports different interaction mechanisms supporting a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system.
Resumo:
Executive Summary This project has commenced an exploration of learning and information experiences in the QUT Cube. Understanding learning in this environment has the potential to inform current implementations and future project development. In this report, we present early findings from the first phase of an investigation into what makes learning possible in the context of a giant interactive multi-media display such as the QUT Cube, which is an award-winning configuration that hosts several projects.
Resumo:
The ability to identify and assess user engagement with transmedia productions is vital to the success of individual projects and the sustainability of this mode of media production as a whole. It is essential that industry players have access to tools and methodologies that offer the most complete and accurate picture of how audiences/users engage with their productions and which assets generate the most valuable returns of investment. Drawing upon research conducted with Hoodlum Entertainment, a Brisbane-based transmedia producer, this project involved an initial assessment of the way engagement tends to be understood, why standard web analytics tools are ill-suited to measuring it, how a customised tool could offer solutions, and why this question of measuring engagement is so vital to the future of transmedia as a sustainable industry. Working with data provided by Hoodlum Entertainment and Foxtel Marketing, the outcome of the study was a prototype for a custom data visualisation tool that allowed access, manipulation and presentation of user engagement data, both historic and predictive. The prototyped interfaces demonstrate how the visualization tool would collect and organise data specific to multiplatform projects by aggregating data across a number of platform reporting tools. Such a tool is designed to encompass not only platforms developed by the transmedia producer but also sites developed by fans. This visualisation tool accounted for multiplatform experience projects whose top level is comprised of people, platforms and content. People include characters, actors, audience, distributors and creators. Platforms include television, Facebook and other relevant social networks, literature, cinema and other media that might be included in the multiplatform experience. Content refers to discreet media texts employed within the platform, such as tweet, a You Tube video, a Facebook post, an email, a television episode, etc. Core content is produced by the creators’ multiplatform experiences to advance the narrative, while complimentary content generated by audience members offers further contributions to the experience. Equally important is the timing with which the components of the experience are introduced and how they interact with and impact upon each other. Being able to combine, filter and sort these elements in multiple ways we can better understand the value of certain components of a project. It also offers insights into the relationship between the timing of the release of components and user activity associated with them, which further highlights the efficacy (or, indeed, failure) of assets as catalysts for engagement. In collaboration with Hoodlum we have developed a number of design scenarios experimenting with the ways in which data can be visualised and manipulated to tell a more refined story about the value of user engagement with certain project components and activities. This experimentation will serve as the basis for future research.
Resumo:
The goal of this project was to develop a mobile application for the iOS platform, that would support the partner of this project, the Brisbane City Council, in stronger engage citizens in participating in urban planning and development projects. The resulting application is an extended version of FixVegas, a system that allows citizens to report maintenance request to the Brisbane City Council through their smartphone. The new version of the system makes all incoming requests publicly available within the application, allows users to support, comment or disapprove of these. As an addition, the concept of the idea has been introduced. Citizens can submit suggestions for improving the city to the municipality, discuss them with other fellow citizens and, ideally, also with Council representatives. The city officials as well are provided with the ability of publishing development project as an idea and let citizens deliberate it. This way, bidirectional communication between these two parties is created. A web interface complements the iPhone application. The system has been developed after the principle of User Centered Design, by assessing user needs, creating and evaluating prototypes and conducting a user study. The study showed that FixVegas2 has been perceived as an enhancement compared to the previous version, and that the idea concept has been received on a positive note. Indepth questions, such as the influence the system could have on community dynamics or the public participation in urban planning projects could only hardly investigated. However, these findings can be achieved by the alternative study designs that have been proposed.
Resumo:
Rail steel bridges are vulnerable to high impact forces due to the passage of trains; unfortunately the determination of these transient impact forces is not straightforward as these are affected by a large number of parameters, including the wagon design, the wheel-rail contact and the design parameters of the bridge deck and track, as well as the operational parameters – wheel load and speed. To determine these impact forces, a detailed rail train-track/bridge dynamic interaction model has been developed, which includes a comprehensive train model using multi-body dynamics approach and a flexible track/bridge model using Euler– Bernoulli beam theory. Single and multi-span bridges have been modelled to examine their dynamic characteristics. From the single span bridge, the train critical speed is determined; the minimum distance of two peak loadings is found to affect the train critical speed. The impact factor and the dynamic characteristics are discussed.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Recently, a variety high-aspect-ratio nanostructures have been grown and profiled for various applications ranging from field emission transistors to gene/drug delivery devices. However, fabricating and processing arrays of these structures and determining how changing certain physical parameters affects the final outcome is quite challenging. We have developed several modules that can be used to simulate the processes of various physical vapour deposition systems from precursor interaction in the gas phase to gas-surface interactions and surface processes. In this paper, multi-scale hybrid numerical simulations are used to study how low-temperature non-equilibrium plasmas can be employed in the processing of high-aspect-ratio structures such that the resulting nanostructures have properties suitable for their eventual device application. We show that whilst using plasma techniques is beneficial in many nanofabrication processes, it is especially useful in making dense arrays of high-aspect-ratio nanostructures.
Resumo:
This research provides validated Finite Element techniques to analyse pile foundations under seismic loads. The results show that the capability of the technique to capture the important pile response which includes kinematic and inertial interaction effects, effects of soil stiffness and depth on pile deflection patterns and permanent deformations.
Resumo:
STAC is a mobile application (app) designed to promote the benefits of climate-aware urban development in Subtropical environments. Although, STAC is primarily tool for understanding climate efficient buildings in Brisbane, Australia, it also demonstrates how other exemplary buildings operate in other subtropical cities of the world. The STAC research and development team applied research undertaken by the Centre for Subtropical Design (Brisbane) to profile buildings past and present that have contributed to the creation of a vibrant society, a viable economy, a healthy environment, and an authentic sense of place. In collaboration with researchers from the field of Interaction Design, this knowledge and data was collated, processed and curated for presentation via a custom mobile application designed to distribute this important research for review and consideration on-location in local settings and for comparison across all other global subtropical regions and projects identified by this research. This collaboration adopted a Design-based Research (DBR) Methodology guided by the main tenets of research and design iteration and cross-discipline collaboration in real-world settings, resulting in the formulation of contextually-sensitive design principles, theories, and tools for design intervention. Combined with significant context review of available technology and data and subsequent case study analysis of exemplar design applications.
Resumo:
This thesis investigates the Value Management processes used by construction project clients that effects project team involvement in VM workshops during the design stage of the projects. It is based on five case studies of the Malaysian international airport construction project packages. The focus of the research is on how issues related to infrastructure design that can improve construction processes on-site are being identified, analysed and resolved through multi-disciplinary team participation. The degrees of interaction, diversity of visualisation aids, certain cultural dimensions and the system thinking approach are found to have significant influence in maximizing participation among project team members during the entire VM workshop process.
Resumo:
Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.
Resumo:
This paper investigates the soil–pile interaction of a pile embedded in a deep multi-layered soil under seismic excitation considering both kinematic and inertial interaction effects. A comprehensive three-dimensional finite element model is developed and validated using existing results in the literature. The response of the pile in the deep multi-layered soil profile is investigated with respect to pile head response, deflection modes and maximum deflections along the pile. Results show that the pile exhibits complex deflection patterns and that the pile response is influenced by the properties of both the soil profile and the seismic excitation. It is also evident that kinematic interaction effects have a greater influence on the pile response than the inertial interaction effects.
Resumo:
This paper examines the issue of face, speaker and bi-modal authentication in mobile environments when there is significant condition mismatch. We introduce this mismatch by enrolling client models on high quality biometric samples obtained on a laptop computer and authenticating them on lower quality biometric samples acquired with a mobile phone. To perform these experiments we develop three novel authentication protocols for the large publicly available MOBIO database. We evaluate state-of-the-art face, speaker and bi-modal authentication techniques and show that inter-session variability modelling using Gaussian mixture models provides a consistently robust system for face, speaker and bi-modal authentication. It is also shown that multi-algorithm fusion provides a consistent performance improvement for face, speaker and bi-modal authentication. Using this bi-modal multi-algorithm system we derive a state-of-the-art authentication system that obtains a half total error rate of 6.3% and 1.9% for Female and Male trials, respectively.
Resumo:
This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.