108 resultados para maximum contrast analysis
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production.
Resumo:
Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.
Resumo:
Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release-akin to its role in vesicle formation-and is not restricted to severing the thin membrane tether.
Resumo:
Several techniques have been proposed in the literature to measure productivity. While allowing for inefficiency of the production unit, we provide a methodological comparison of alternative approaches to measure total factor productivity. This article evaluates the effects of unintended policy outcomes such as government subsidies and foreign trade. Empirically, we analyse the forest productivity of timber in Japan by using panel data on 46 regions. The results suggest substantial variation in productivity between these two techniques although average trends are similar. We find that subsidies impede competition since the government is ready to rescue a loss-making firm with subsidies rather than allow it to close. In contrast, trade is shown to have positive effects on productivity.
Resumo:
The chubby baby who eats well is desirable in our culture. Perceived low weight gains and feeding concerns are common reasons mothers seek advice in the early years. In contrast, childhood obesity is a global public health concern. Use of coercive feeding practices, prompted by maternal concern about weight, may disrupt a child’s innate self regulation of energy intake, promoting overeating and overweight. This study describes predictors of maternal concern about her child undereating/becoming underweight and feeding practices. Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n = 332) completed a self-administered questionnaire when the child was aged 12–16 months. Weight-for-age z-score (WAZ)was derived from weight measured by study staff. Mean age (SD) was 13.8 (1.3) months, mean WAZ (SD), 0.58 (0.86) and 49% were male. WAZ and two questions describing food refusal were combined in a structural equation model with four items from the Infant feeding Questionnaire (IFQ) to form the factor ‘Concern about undereating/weight’. Structural relationships were drawn between concern and IFQ factors ‘awareness of infant’s hunger and satiety cues’, ‘use of food to calm infant’s fussiness’ and ‘feeding infant on a schedule’, resulting in a model of acceptable fit. Lower WAZ and higher frequency of food refusal predicted higher maternal concern. Higher maternal concern was associated with lower awareness of infant cues (r = −.17, p = .01) and greater use of food to calm (r = .13, p = .03). In a cohort of healthy children, maternal concern about undereating and underweight was associated with practices that have the potential to disrupt self-regulation.
Resumo:
In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.
Resumo:
The echolocation calls of long-tailed bats (Chalinolobus tuberculatus) were recorded in the Eglinton Valley, Fjordland, New Zealand, and digitized for analysis with the signal-processing software. Univariate and multivariate analyses of measure features facilitated a quantitative classification of the calls. Cluster analysis was used to categorize calls into two groups equating to search and terminal buzz calls described qualitatively for other species. When moving from search to terminal phases, the calls decrease in bandwidth, maximum and minimum frequency of call, and duration. Search calls begin with a steep-downward FM sweep followed by a short, less-modulated component. Buzz calls are FM sweeps. Although not found quantitatively, a broad pre-buzz group of calls also was identified. Ambiguity analysis of calls from the three groups shows that search-phrase calls are well suited to resolving the velocity of targets, and hence, identifying moving targets in a stationary clutter. Pre-buzz and buzz calls are better suited to resolving range, a feature that may aid the bats in capture of evasive prey after it has been identified.
Resumo:
Long-term systematic population monitoring data sets are rare but are essential in identifying changes in species abundance. In contrast, community groups and natural history organizations have collected many species lists. These represent a large, untapped source of information on changes in abundance but are generally considered of little value. The major problem with using species lists to detect population changes is that the amount of effort used to obtain the list is often uncontrolled and usually unknown. It has been suggested that using the number of species on the list, the "list length," can be a measure of effort. This paper significantly extends the utility of Franklin's approach using Bayesian logistic regression. We demonstrate the value of List Length Analysis to model changes in species prevalence (i.e., the proportion of lists on which the species occurs) using bird lists collected by a local bird club over 40 years around Brisbane, southeast Queensland, Australia. We estimate the magnitude and certainty of change for 269 bird species and calculate the probabilities that there have been declines and increases of given magnitudes. List Length Analysis confirmed suspected species declines and increases. This method is an important complement to systematically designed intensive monitoring schemes and provides a means of utilizing data that may otherwise be deemed useless. The results of List Length Analysis can be used for targeting species of conservation concern for listing purposes or for more intensive monitoring. While Bayesian methods are not essential for List Length Analysis, they can offer more flexibility in interrogating the data and are able to provide a range of parameters that are easy to interpret and can facilitate conservation listing and prioritization. © 2010 by the Ecological Society of America.
Resumo:
Background There is growing evidence that the ghrelin axis, including ghrelin (GHRL) and its receptor, the growth hormone secretagogue receptor (GHSR), play a role in cancer progression. Ghrelin gene and ghrelin receptor gene polymorphisms have been reported to have a range of effects in cancer, from increased risk, to protection from cancer, or having no association. In this study we aimed to clarify the role of ghrelin and ghrelin receptor polymorphisms in cancer by performing a meta-analysis of published case–control studies. We conducted searches of the literature published up to January 2013 in MEDLINE using the PubMed search engine. Individual data on 8,430 cases and 14,008 controls from six case–control studies of an all Caucasian population were evaluated for three ghrelin gene (GHRL; rs696217, rs4684677, rs2075356) and one ghrelin receptor (GHSR; rs572169) polymorphism in breast cancer, esophageal cancer, colorectal cancer and non-Hodgkins lymphoma. Results In the overall analysis, homozygous and recessive associations indicated that the minor alleles of rs696217 and rs2075356 GHRL polymorphisms conferred reduced cancer risk (odds ratio [OR] 0.61-0.78). The risk was unchanged for breast cancer patients when analysed separately (OR 0.73-0.83). In contrast, the rs4684677 GHRL and the rs572169 GHSR polymorphisms conferred increased breast cancer risk (OR 1.97-1.98, p = 0.08 and OR 1.42-1.43, p = 0.08, respectively). All dominant and co-dominant effects showed null effects (OR 0.96-1.05), except for the rs572169 co-dominant effect, with borderline increased risk (OR 1.08, p = 0.05). Conclusions This study suggests that the rs696217 and rs2075356 ghrelin gene (GHRL) polymorphisms may protect carriers against breast cancer, and the rs4684677 GHRL and rs572169 GHSR polymorphisms may increase the risk among carriers. In addition, larger studies are required to confirm these findings.
Resumo:
Background Foot dorsiflexion plays an essential role in both controlling balance and human gait. Electromyography (EMG) and sonomyography (SMG) can provide information on several aspects of muscle function. The aim was to establish the relationship between the EMG and SMG variables during isotonic contractions of foot dorsiflexors. Methods Twenty-seven healthy young adults performed the foot dorsiflexion test on a device designed ad hoc. EMG variables were maximum peak and area under the curve. Muscular architecture variables were muscle thickness and pennation angle. Descriptive statistical analysis, inferential analysis and a multivariate linear regression model were carried out. The confidence level was established with a statistically significant p-value of less than 0.05. Results The correlation between EMG variables and SMG variables was r = 0.462 (p < 0.05). The linear regression model to the dependent variable “peak normalized tibialis anterior (TA)” from the independent variables “pennation angle and thickness”, was significant (p = 0.002) with an explained variance of R2 = 0.693 and SEE = 0.16. Conclusions There is a significant relationship and degree of contribution between EMG and SMG variables during isotonic contractions of the TA muscle. Our results suggest that EMG and SMG can be feasible tools for monitoring and assessment of foot dorsiflexors. TA muscle parameterization and assessment is relevant in order to know that increased strength accelerates the recovery of lower limb injuries.
Resumo:
Objective To analyze the ability to discriminate between healthy individuals and individuals with chronic nonspecific low back pain (CNLBP) by measuring the relation between patient-reported outcomes and objective clinical outcome measures of the erector spinae (ES) muscles using an ultrasound during maximal isometric lumbar extension. Design Cross-sectional study with screening and diagnostic tests with no blinded comparison. Setting University laboratory. Participants Healthy individuals (n=33) and individuals with CNLBP (n=33). Interventions Each subject performed an isometric lumbar extension. With the variables measured, a discriminate analysis was performed using a value ≥6 in the Roland and Morris disability questionnaire (RMDQ) as the grouping variable. Then, a logistic regression with the functional and architectural variables was performed. A new index was obtained from each subject value input in the discriminate multivariate analysis. Main Outcome Measures Morphologic muscle variables of the ES muscle were measured through ultrasound images. The reliability of the measures was calculated through intraclass correlation coefficients (ICCs). The relation between patient-reported outcomes and objective clinical outcome measures was analyzed using a discriminate function from standardized values of the variables and an analysis of the reliability of the ultrasound measurement. Results The reliability tests show an ICC value >.95 for morphologic and functional variables. The independent variables included in the analysis explained 42% (P=.003) of the dependent variable variance. Conclusions The relation between objective variables (electromyography, thickness, pennation angle) and a subjective variable (RMDQ ≥6) and the capacity of this relation to identify CNLBP within a group of healthy subjects is moderate. These results should be considered by clinicians when treating this type of patient in clinical practice.
Resumo:
This study uses the reverse salient methodology to contrast subsystems in video game consoles in order to discover, characterize, and forecast the most significant technology gap. We build on the current methodologies (Performance Gap and Time Gap) for measuring the magnitude of Reverse Salience, by showing the effectiveness of Performance Gap Ratio (PGR). The three subject subsystems in this analysis are the CPU Score, GPU core frequency, and video memory bandwidth. CPU Score is a metric developed for this project, which is the product of the core frequency, number of parallel cores, and instruction size. We measure the Performance Gap of each subsystem against concurrently available PC hardware on the market. Using PGR, we normalize the evolution of these technologies for comparative analysis. The results indicate that while CPU performance has historically been the Reverse Salient, video memory bandwidth has taken over as the quickest growing technology gap in the current generation. Finally, we create a technology forecasting model that shows how much the video RAM bandwidth gap will grow through 2019 should the current trend continue. This analysis can assist console developers in assigning resources to the next generation of platforms, which will ultimately result in longer hardware life cycles.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.
Resumo:
Twin studies are a major research direction in imaging genetics, a new field, which combines algorithms from quantitative genetics and neuroimaging to assess genetic effects on the brain. In twin imaging studies, it is common to estimate the intraclass correlation (ICC), which measures the resemblance between twin pairs for a given phenotype. In this paper, we extend the commonly used Pearson correlation to a more appropriate definition, which uses restricted maximum likelihood methods (REML). We computed proportion of phenotypic variance due to additive (A) genetic factors, common (C) and unique (E) environmental factors using a new definition of the variance components in the diffusion tensor-valued signals. We applied our analysis to a dataset of Diffusion Tensor Images (DTI) from 25 identical and 25 fraternal twin pairs. Differences between the REML and Pearson estimators were plotted for different sample sizes, showing that the REML approach avoids severe biases when samples are smaller. Measures of genetic effects were computed for scalar and multivariate diffusion tensor derived measures including the geodesic anisotropy (tGA) and the full diffusion tensors (DT), revealing voxel-wise genetic contributions to brain fiber microstructure.