311 resultados para machine traffic
Resumo:
This paper presents a Genetic Algorithms (GA) approach to resolve traffic conflicts at a railway junction. The formulation of the problem for the suitable application of GA will be discussed and three neighborhoods have been proposed for generation evolution. The performance of the GA is evaluated by computer simulation. This study paves the way for more applications of artificial intelligence techniques on a rather conservative industry.
Resumo:
This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
Flood-besieged Brisbane residents were forced to watch the monster river consume their homes and livelihoods then see the receding water leave behind a putrid, tar-like sludge. The rains formed by multiple low pressure systems over Central Queensland caused chaos over the Christmas and New Year break for many parts of Queensland.
Resumo:
Overloaded truck traffic is a significant problem on highways around the world. Developing countries in particular, overloaded truck traffic causes large amounts of unexpected expenditure in terms of road maintenance because of premature pavement damage. Overloaded truck traffic is a common phenomenon in developing countries, because of inefficient road management and monitoring systems. According to the available literature, many developing countries are facing the same problem, which is economic loss caused by the existence of overloaded trucks in the traffic stream. This paper summarizes the available literature, news reports, journal articles and traffic research regarding overloaded traffic. It examines the issue of overloading and the strategies and legislation used in developed countries.
Resumo:
Background: Pregnant women exposed to traffic pollution have an increased risk of negative birth outcomes. We aimed to investigate the size of this risk using a prospective cohort of 970 mothers and newborns in Logan, Queensland. ----- ----- Methods: We examined two measures of traffic: distance to nearest road and number of roads around the home. To examine the effect of distance we used the number of roads around the home in radii from 50 to 500 metres. We examined three road types: freeways, highways and main roads.----- ----- Results: There were no associations with distance to road. A greater number of freeways and main roads around the home were associated with a shorter gestation time. There were no negative impacts on birth weight, birth length or head circumference after adjusting for gestation. The negative effects on gestation were largely due to main roads within 400 metres of the home. For every 10 extra main roads within 400 metres of the home, gestation time was reduced by 1.1% (95% CI: -1.7, -0.5; p-value = 0.001).----- ----- Conclusions: Our results add weight to the association between exposure to traffic and reduced gestation time. This effect may be due to the chemical toxins in traffic pollutants, or because of disturbed sleep due to traffic noise.
Resumo:
A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.