196 resultados para interspecific hybrid
Resumo:
A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.
Resumo:
Most recommendation methods employ item-item similarity measures or use ratings data to generate recommendations. These methods use traditional two dimensional models to find inter relationships between alike users and products. This paper proposes a novel recommendation method using the multi-dimensional model, tensor, to group similar users based on common search behaviour, and then finding associations within such groups for making effective inter group recommendations. Web log data is multi-dimensional data. Unlike vector based methods, tensors have the ability to highly correlate and find latent relationships between such similar instances, consisting of users and searches. Non redundant rules from such associations of user-searches are then used for making recommendations to the users.
Resumo:
Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.
Resumo:
In practice, parallel-machine job-shop scheduling (PMJSS) is very useful in the development of standard modelling approaches and generic solution techniques for many real-world scheduling problems. In this paper, based on the analysis of structural properties in an extended disjunctive graph model, a hybrid shifting bottleneck procedure (HSBP) algorithm combined with Tabu Search metaheuristic algorithm is developed to deal with the PMJSS problem. The original-version SBP algorithm for the job-shop scheduling (JSS) has been significantly improved to solve the PMJSS problem with four novelties: i) a topological-sequence algorithm is proposed to decompose the PMJSS problem into a set of single-machine scheduling (SMS) and/or parallel-machine scheduling (PMS) subproblems; ii) a modified Carlier algorithm based on the proposed lemmas and the proofs is developed to solve the SMS subproblem; iii) the Jackson rule is extended to solve the PMS subproblem; iv) a Tabu Search metaheuristic algorithm is embedded under the framework of SBP to optimise the JSS and PMJSS cases. The computational experiments show that the proposed HSBP is very efficient in solving the JSS and PMJSS problems.
Resumo:
This paper discusses the research carried out towards the development of a hybrid-composite floor plate systems (HCFPS) using polyurethane (PU), glass-fibre reinforced cement (GRC) and thin perforated steel laminate. HCFPS is configured in such a way where positive inherent properties of individual component materials are combined to offset any weakness and achieve the optimum performance. Finite Element modeling of HCFPS with ABAQUS 6.9-1, comparative studies of HCFPS with the steel deck composite system and experimental investigations which will be carried out are briefly described in the paper.
Resumo:
With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.
Resumo:
Ambient media architecture can provide place-based collaborative learning experiences and pathways for social interactions that would not be otherwise possible. This paper is concerned with ways of enhancing peer-to-peer learning affordances in library spaces; how can the library facilitate the community of library users to learn from each other? We report on the findings of a study that employed a participatory design method where participants were asked to reflect and draw places, social networks, and activities that they use to work (be creative, productive), play (have fun, socialize, be entertained), and learn (acquire new information, knowledge, or skills). The results illustrate how informal learning – learning outside the formal education system – is facilitated by a personal selection of physical and socio-cultural environments, as well as online tools, platforms, and networks. This paper sheds light on participants’ individually curated ecologies of their work, play, and learning related networks and the hybrid (physical and digital) nature of these places. These insights reveal opportunities for ambient media architecture to increase awareness of and connections between people’s hybrid personal learning environments.
Resumo:
The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...
Resumo:
A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints, including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing most invalid matches. The accuracy of matching in the vicinity of edges is also improved.
Resumo:
New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.