187 resultados para health technology assessment
Resumo:
In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.
Resumo:
The world’s population is ageing rapidly. Ageing has an impact on all aspects of human life, including social, economic, cultural, and political. Understanding ageing is therefore an important issue for the 21st century. This chapter will consider the active ageing model. This model is based on optimising opportunities for health, participation, and security in order to enhance quality of life. There is a range of exciting options developing for personal health management, for and by the ageing population, that make use of computer technology, and these should support active ageing. Their use depends however on older people learning to use computer technology effectively. The ability to use such technology will allow them to access relevant health information, advice, and support independently from wherever they live. Such support should increase rapidly in the future. This chapter is a consideration of ageing and learning, ageing and use of computer technology, and personal health management using computers.
Resumo:
Well implemented criterion-referenced assessment (CRA) requires dedicated time and effort, especially in describing realistic expectations of evidence of achievement to students in the form of criteria sheets (or grading rubrics). It is also takes time out of delivering content to teach students how to judge their own work using criteria sheets. In 2007, to engage third year Microbiology students in using criteria sheets for the first time in their degree, we devised an innovative assessment tutorial supported by online resources. We were sceptical of much of the literature that reported ‘agreed’ characteristics of our predominantly gen Y cohort, because of the older ages of the majority of authors. These authors claim gen Y has a propensity for digital media, overconfidence in their own abilities and a collaborative orientation. We rejected this stereotype when developing the tutorial. Evaluations by students were positive and there was no dramatic change to grades for the unit. These results are similar to those in the literature for non gen Y cohorts. This lends support to our claim that giving students control over their own learning, irrespective of their generational label, is worth the time and effort.
Resumo:
Sewage and its microbiology, treatment and disposal are important to the topic of Antarctic wildlife health because disposal of untreated sewage effluent into the Antarctic marine environment is both allowed and commonplace. Human sewage contains enteric bacteria as normal flora, and has the potential to contain parasites, bacteria and viruses which may prove pathogenic to Antarctic wildlife. Treatment can reduce levels of micro-organisms in sewage effluent, but is not a requirement of the Environmental Protocol to the Antarctic Treaty (the Madrid Protocol). In contrast, the deliberate release of non-native organisms for any other reason is prohibited. Hence, disposal of sewage effluent to the marine environment is the only activity routinely undertaken in Antarctica knowing that it will likely result in the release of large numbers of potentially non-native species. When the Madrid Protocol was negotiated, the decision to allow release of untreated sewage effluent was considered the only pragmatic option, as a prohibition would have been costly, and may not have been achievable by many Antarctic operators. In addition, at that time the potential for transmission of pathogens to wildlife from sewage was not emphasised as a significant potential risk. Since then, the transmission of disease-causing agents between species is more widely recognised and it is now timely to consider the risks of continued discharge of sewage effluent in Antarctica and whether there are practical alternatives.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
A few studies examined interactive effects between air pollution and temperature on health outcomes. This study is to examine if temperature modified effects of ozone and cardiovascular mortality in 95 large US cities. A nonparametric and a parametric regression models were separately used to explore interactive effects of temperature and ozone on cardiovascular mortality during May and October, 1987-2000. A Bayesian meta-analysis was used to pool estimates. Both models illustrate that temperature enhanced the ozone effects on mortality in the northern region, but obviously in the southern region. A 10-ppb increment in ozone was associated with 0.41 % (95% posterior interval (PI): -0.19 %, 0.93 %), 0.27 % (95% PI: -0.44 %, 0.87 %) and 1.68 % (95% PI: 0.07 %, 3.26 %) increases in daily cardiovascular mortality corresponding to low, moderate and high levels of temperature, respectively. We concluded that temperature modified effects of ozone, particularly in the northern region.
Resumo:
Background and Objective: As global warming continues, the frequency, intensity and duration of heatwaves are likely to increase. However, a heatwave is unlikely to be defined uniformly because acclimatisation plays a significant role in determining the heat-related impact. This study investigated how to best define a heatwave in Brisbane, Australia. Methods: Computerised datasets on daily weather, air pollution and health outcomes between 1996 and 2005 were obtained from pertinent government agencies. Paired t-tests and case-crossover analyses were performed to assess the relationship between heatwaves and health outcomes using different heatwave definitions. Results: The maximum temperature was as high as 41.5°C with a mean maximum daily temperature of 26.3°C. None of the five commonly-used heatwave definitions suited Brisbane well on the basis of the health effects of heatwaves. Additionally, there were pros and cons when locally-defined definitions were attempted using either a relative or absolute definition for extreme temperatures. Conclusion: The issue of how to best define a heatwave is complex. It is important to identify an appropriate definition of heatwave locally and to understand its health effects.
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Resumo:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.
Resumo:
Introduction The purpose of this study was to develop, implement and evaluate the impact of an educational intervention, comprising an innovative model of clinical decisionmaking and educational delivery strategy for facilitating nursing students‘ learning and development of competence in paediatric physical assessment practices. Background of the study Nursing students have an undergraduate education that aims to produce graduates of a generalist nature who demonstrate entry level competence for providing nursing care in a variety of health settings. Consistent with population morbidity and health care roles, paediatric nursing concepts typically form a comparatively small part of undergraduate curricula and students‘ exposure to paediatric physical assessment concepts and principles are brief. However, the nursing shortage has changed traditional nursing employment patterns and new graduates form the majority of the recruitment pool for paediatric nursing speciality staff. Paediatric nursing is a popular career choice for graduates and anecdotal evidence suggests that nursing students who select a clinical placement in their final year intend to seek employment in paediatrics upon graduation. Although concepts of paediatric nursing are included within undergraduate curriculum, students‘ ability to develop the required habits of mind to practice in what is still regarded as a speciality area of practice is somewhat limited. One of the areas of practice where this particularly impacts is in paediatric nursing physical assessment. Physical assessment is a fundamental component of nursing practice and competence in this area of practice is central to nursing students‘ development of clinical capability for practice as a registered nurse. Timely recognition of physiologic deterioration of patients is a key outcome of nurses‘ competent use of physical assessment strategies, regardless of the practice context. In paediatric nursing contexts children‘s physical assessment practices must specifically accommodate the child‘s different physiological composition, function and pattern of clinical deterioration (Hockenberry & Barrera, 2007). Thus, to effectively manage physical assessment of patients within the paediatric practice setting nursing students need to integrate paediatric nursing theory into their practice. This requires significant information processing and it is in this process where students are frequently challenged. The provision of rules or models can guide practice and assist novice-level nurses to develop their capabilities (Benner, 1984; Benner, Hooper-Kyriakidis & Stannard, 1999). Nursing practice models are cognitive tools that represent simplified patterns of expert analysis employing concepts that suit the limited reasoning of the inexperienced, and can represent the =rules‘ referred to by Benner (1984). Without a practice model of physical assessment students are likely to be uncertain about how to proceed with data collection, the interpretation of paediatric clinical findings and the appraisal of findings. These circumstances can result in ad hoc and unreliable nursing physical assessment that forms a poor basis for nursing decisions. The educational intervention developed as part of this study sought to resolve this problem and support nursing students‘ development of competence in paediatric physical assessment. Methods This study utilised the Context Input Process Product (CIPP) Model by Stufflebeam (2004) as the theoretical framework that underpinned the research design and evaluation methodology. Each of the four elements in the CIPP model were utilised to guide discrete stages of this study. The Context element informed design of the clinical decision-making process, the Paediatric Nursing Physical Assessment model. The Input element was utilised in appraising relevant literature, identifying an appropriate instructional methodology to facilitate learning and educational intervention delivery to undergraduate nursing students, and development of program content (the CD-ROM kit). Study One employed the Process element and used expert panel approaches to review and refine instructional methods, identifying potential barriers to obtaining an effective evaluation outcome. The Product element guided design and implementation of Study Two, which was conducted in two phases. Phase One employed a quasiexperimental between-subjects methodology to evaluate the impact of the educational intervention on nursing students‘ clinical performance and selfappraisal of practices in paediatric physical assessment. Phase Two employed a thematic analysis and explored the experiences and perspectives of a sample subgroup of nursing students who used the PNPA CD-ROM kit as preparation for paediatric clinical placement. Results Results from the Process review in Study One indicated that the prototype CDROM kit containing the PNPA model met the predetermined benchmarks for face validity and the impact evaluation instrumentation had adequate content validity in comparison with predetermined benchmarks. In the first phase of Study Two the educational intervention did not result in statistically significant differences in measures of student performance or self-appraisal of practice. However, in Phase Two qualitative commentary from students, and from the expert panel who reviewed the prototype CD-ROM kit (Study One, Phase One), strongly endorsed the quality of the intervention and its potential for supporting learning. This raises questions regarding transfer of learning and it is likely that, within this study, several factors have influenced students‘ transfer of learning from the educational intervention to the clinical practice environment, where outcomes were measured. Conclusion In summary, the educational intervention employed in this study provides insights into the potential e-learning approaches offer for delivering authentic learning experiences to undergraduate nursing students. Findings in this study raise important questions regarding possible pedagogical influences on learning outcomes, issues within the transfer of theory to practice and factors that may have influenced findings within the context of this study. This study makes a unique contribution to nursing education, specifically with respect to progressing an understanding of the challenges faced in employing instructive methods to impact upon nursing students‘ development of competence. The important contribution transfer of learning processes make to students‘ transition into the professional practice context and to their development of competence within the context of speciality practice is also highlighted. This study contributes to a greater awareness of the complexity of translating theoretical learning at undergraduate level into clinical practice, particularly within speciality contexts.
Resumo:
Introduction. In adults, oral health has been shown to worsen during critical illness as well as influence systemic health. There is a paucity of paediatric critical care research in the area of oral health; hence the purpose of the Critically ill Children’s Oral Health (CCOH) study is to describe the status of oral health of critically ill children over time spent in the paediatric intensive care unit (PICU). The study will also examine the relationship between poor oral health and a variety of patient characteristics and PICU therapies and explore the relationship between dysfunctional oral health and PICU related Healthcare-Associated Infections (HAI). Method. An observational study was undertaken at a single tertiary-referral PICU. Oral health was measured using the Oral Assessment Scale (OAS) and culturing oropharyngeal flora. Information was also collected surrounding the use of supportive therapies, clinical characteristics of the children and the occurrence of PICU related HAI. Results. Forty-six participants were consecutively recruited to the CCOH study. Of the participants 63% (n=32) had oral dysfunction while 41% (n=19) demonstrated pathogenic oropharyngeal colonisation during their critical illness. The potential systemic pathogens isolated from the oropharynx and included Candida sp., Staphylococcus aureus, Haemophilus influenzae, Enterococcus sp. and Pseudomonas aeruginosa. The severity of critical illness had a significant positive relationship (p=0.046) with pathogenic and absent colonisation of the oropharynx. Sixty-three percent of PICU-related HAI involved the preceding or simultaneous colonisation of the oropharynx by the causative pathogen. Conclusion. Given the prevalence of poor oral health during childhood critical illness and the subsequent potential systemic consequences, evidence based oral hygiene practices should be developed and validated to guide clinicians when nursing critically ill children.
Resumo:
One of role of the nurse in the clinical setting is that of coordinating communication across the healthcare team. On a daily basis nurses interact with the person receiving care, their family members, and multiple care providers thus placing the nurse in the central position with access to a vast array of information on the person. Through this nurses have historically functioned as “information repositories”. With the advent of Health Information Technology (HIT) tools there is a potential that HIT could impact interdisciplinary communication, practice efficiency and effectiveness, relationships and workflow in acute care settings \[1]\[3]. In 2005, the HIMSS Nursing Informatics Community developed the IHITScale to measure the impact of HIT on the nursing role and interdisciplinary communication in USA hospitals. In 2007, nursing informatics colleagues from Australia, Finland, Ireland, New Zealand, Scotland and the USA formed a research collaborative to validate the IHIT in six additional countries. This paper will discuss the background, methodology, results and implications from the Australian IHIT survey of over 1100 nurses. The results are currently being analyzed and will be presented at the conference.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus for the assessment of osteoporosis was first described within this journal 25 years ago. It was recognized in 2006 by Universities UK as being one of the ‘100 discoveries and developments in UK Universities that have changed the world’ over the past 50 years. In 2008, the UK's Department of Health also recognized BUA assessment of osteoporosis in a publication highlighting 11 projects that have contributed to ‘60 years of NHS research benefiting patients’. The BUA technique has been extensively clinically validated and is utilized worldwide, with at least seven commercial systems currently providing calcaneal BUA measurement. However, there is still no fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone. This review aims to provide an ‘engineering in medicine’ perspective and proposes a new paradigm based upon phase cancellation due to variation in propagation transit time across the receive transducer face to explain the non-linear relationship between BUA and bone volume fraction in cancellous bone.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
The Queensland Coal Industry Employees Health Scheme was implemented in 1993 to provide health surveillance for all Queensland coal industry workers. Tt1e government, mining employers and mining unions agreed that the scheme should operate for seven years. At the expiry of the scheme, an assessment of the contribution of health surveillance to meet coal industry needs would be an essential part of determining a future health surveillance program. This research project has analysed the data made available between 1993 and 1998. All current coal industry employees have had at least one health assessment. The project examined how the centralised nature of the Health Scheme benefits industry by identi~)jng key health issues and exploring their dimensions on a scale not possible by corporate based health surveillance programs. There is a body of evidence that indicates that health awareness - on the scale of the individual, the work group and the industry is not a part of the mining industry culture. There is also growing evidence that there is a need for this culture to change and that some change is in progress. One element of this changing culture is a growth in the interest by the individual and the community in information on health status and benchmarks that are reasonably attainable. This interest opens the way for health education which contains personal, community and occupational elements. An important element of such education is the data on mine site health status. This project examined the role of health surveillance in the coal mining industry as a tool for generating the necessary information to promote an interest in health awareness. The Health Scheme Database provides the material for the bulk of the analysis of this project. After a preliminary scan of the data set, more detailed analysis was undertaken on key health and related safety issues that include respiratory disorders, hearing loss and high blood pressure. The data set facilitates control for confounding factors such as age and smoking status. Mines can be benchmarked to identify those mines with effective health management and those with particular challenges. While the study has confirmed the very low prevalence of restrictive airway disease such as pneu"moconiosis, it has demonstrated a need to examine in detail the emergence of obstructive airway disease such as bronchitis and emphysema which may be a consequence of the increasing use of high dust longwall technology. The power of the Health Database's electronic data management is demonstrated by linking the health data to other data sets such as injury data that is collected by the Department of l\1mes and Energy. The analysis examines serious strain -sprain injuries and has identified a marked difference between the underground and open cut sectors of the industry. The analysis also considers productivity and OHS data to examine the extent to which there is correlation between any pairs ofJpese and previously analysed health parameters. This project has demonstrated that the current structure of the Coal Industry Employees Health Scheme has largely delivered to mines and effective health screening process. At the same time, the centralised nature of data collection and analysis has provided to the mines, the unions and the government substantial statistical cross-sectional data upon which strategies to more effectively manage health and relates safety issues can be based.