142 resultados para fluorescence microscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly of retroviruses such as HIV-1 is driven by oligomerization of their major structural protein, Gag. Gag is a multidomain polyprotein including three conserved folded domains: MA (matrix), CA (capsid) and NC (nucleocapsid)(1). Assembly of an infectious virion proceeds in two stages(2). In the first stage, Gag oligomerization into a hexameric protein lattice leads to the formation of an incomplete, roughly spherical protein shell that buds through the plasma membrane of the infected cell to release an enveloped immature virus particle. In the second stage, cleavage of Gag by the viral protease leads to rearrangement of the particle interior, converting the non-infectious immature virus particle into a mature infectious virion. The immature Gag shell acts as the pivotal intermediate in assembly and is a potential target for anti-retroviral drugs both in inhibiting virus assembly and in disrupting virus maturation(3). However, detailed structural information on the immature Gag shell has not previously been available. For this reason it is unclear what protein conformations and interfaces mediate the interactions between domains and therefore the assembly of retrovirus particles, and what structural transitions are associated with retrovirus maturation. Here we solve the structure of the immature retroviral Gag shell from Mason-Pfizer monkey virus by combining cryo-electron microscopy and tomography. The 8-angstrom resolution structure permits the derivation of a pseudo-atomic model of CA in the immature retrovirus, which defines the protein interfaces mediating retrovirus assembly. We show that transition of an immature retrovirus into its mature infectious form involves marked rotations and translations of CA domains, that the roles of the amino-terminal and carboxy-terminal domains of CA in assembling the immature and mature hexameric lattices are exchanged, and that the CA interactions that stabilize the immature and mature viruses are almost completely distinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM) with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 μm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palygorskite (P), goethite (G), and hydrothermally synthesized goethite (HG) were used as supports for Fe and Ni. The catalytic activity of these materials was investigated involving in P, G and HG (supported Fe and Ni) for catalytic decomposition of biomass tar derived from rice hull gasification. The materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and transmission electron microscopy (TEM) with an energy dispersive X-ray (EDS). The catalytic activity of P for removal of tar was significantly better than that of G and HG. However, the activity of G with 6 mass% Ni labeled as Ni6/G (tar conversion 94.6%), which was equal to Fe6Ni6/P (94.4%), was better than Ni6/P (64.4%) and Ni6/HG (46.7%). When the loading of Ni (mass%) was 6 mass% on G, tar conversion had the best value (94.6%) and yield of gaseous products reached 486.9, 167.8 and 22.2 mL/(g·tar) for H2, CO, CH4, respectively. The catalytic activity of goethite supported Ni was better in improving tar conversion and improving increased yield of H2, CO, CH4, which was attributed to the existence of Al/Fe substitution of goethite

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-grained matrices in carbonaceous chondrites and small, micron-sized inclusions in achondrites can be characterized effectively using high resolution transmission electron micro­scopy (HRTEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentary single crystals, blades, sheets, euhedral crystals and powders may form by vapor phase condensation depending on the supersauration conditions in the vapor with respect to the condensing species [1]. Filamentary crystal growth requires the operation of an axial screw dislocation [2]. A Vapor-Liquid-Solid (VLS) mechanism may also produce filamentary single crystals, ribbons and blades. The latter two morphologies are typically twinned. Crystals grown by this mechanism do not require the presence of an axial screw dislocation. Impurities may either promote or inhibit crystal growth [3]. The VLS mechanism allows crystals to grow at small supersaturation of the vapor. Thin enstatite blades, ribbons and sheets have been observed in chondritic porous Interplanetary Dust Partics (IDP's) [4, 5]. The requisite screw dislocation for vapor phase condensation [1] has been observed in these enstatite blades [4]. Bradley et al. [4] suggest that these crystals are primary vapor phase condensates which could have formed either in the solar nebula or in presolar environments. These observations [4,5] are significant in that they may provide a demonstrable link to theoretical predictions: viz. that in the primordial solar nebula filamentary condensates could cluster into 'lint balls' and form the predecessors to comets [6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent NASA program to collect stratospheric dust particles using high-flying WB57 aircraft has made available many more potential candidates for the study of extraterrestrial materials. This preliminary report provides an interpretation of the types of particles returned from one flag (W7017) collected in August, 1981 using a subset of 81 allocated particles. This particular collection period is after the Mt. St. Helen's eruptions. Therefore, the flag may contain significant quantities of volcanic debris in addition to the expected terrestrial contaminants [1]. All particles were mounted on nucleopore filters and have been examined using a modified JEOL100CX analytical electron microscope. For most of the particles, X-ray energy dispersive spectra and images were obtained at 40kV on samples which have not received any conductive coating. However, in order to improve resolution (to ~30A) some images are recorded at 100kV. In addition, 16 samples have been coated with a thin layer (<50A) of Au/Pd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed electron-microscopic analysis on 0.5-1.0µm grains in order to study radiation damage by the solar-wind. We are reporting some interesting results we have found in monomineralic grains from core sample 15010,1130. This is a submature soil which has been studied for rare gas abundance and ferromagnetic resonance by (1) and modal petrology by (2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology changes induced in polycrystalline silver catalysts as a result of heating in either oxygen, water or oxygen-methanol atmospheres have been investigated by environmental scanning electron microscopy (ESEM), FT-Raman spectroscopy and temperature programmed desorption (TPD). The silver catalyst of interest consisted of two distinct particle types, one of which contained a significant concentration of sub-surface hydroxy species (in addition to surface adsorbed atomic oxygen). Heating the sample to 663 K resulted in the production of 'pin-holes' in the silver structure as a consequence of near-surface explosions caused by sub-surface hydroxy recombination. Furthermore, 'pin-holes' were predominantly found in the vicinity of surface defects, such as platelets and edge structures. Reaction between methanol and oxygen also resulted in the formation of 'pin-holes' in the silver surface, which were inherently associated with the catalytic process. A reaction mechanism is suggested that involves the interaction of methanol with sub-surface oxygen species to form sub-surface hydroxy groups. The sub-surface hydroxy species subsequently erupt through the silver surface to again produce 'pin-holes'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structurally novel compounds able to block voltage-gated Ca2+ channels (VGCCs) are currently being sought for the development of new drugs directed at neurological disorders. Fluorescence techniques have recently been developed to facilitate the analysis of VGCC blockers in a multi-well format. By utilising the small cell lung carcinoma cell line, NCI-H146, we were able to detect changes in intracellular Ca2+ concentration ([Ca2+]i) using a fluorescence microplate reader. NCI-H146 cells have characteristics resembling those of neuronal cells and express multiple VGCC subtypes, including those of the L-, N- and P-type. We found that K+-depolarisation of fluo-3 loaded NCI-H146 cells causes a rapid and transient increase in fluorescence, which was readily detected in a 96-well plate. Extracts of Australian plants, including those used traditionally as headache or pain treatments, were tested in this study to identify those affecting Ca2+ influx following membrane depolarisation of NCI-H146 cells. We found that E. bignoniiflora, A. symphyocarpa and E. vespertilio caused dose-dependent inhibition of K+-depolarised Ca2+ influx, with IC50 values calculated to be 234, 548 and 209 μg/ml, respectively. This data suggests an effect of these extracts on the function of VGCCs in these cells. Furthermore, we found similar effects using a fluorescence laser imaging plate reader (FLIPR) that allows simultaneous measurement of real-time fluorescence in a multi-well plate. Our results indicate that the dichloromethane extract of E. bignoniiflora and the methanolic extract of E. vespertilio show considerable promise as antagonists of neuronal VGCCs. Further analysis is required to characterise the function of the bioactive constituents in these extracts and determine their selectivity on VGCC subtypes.