84 resultados para diameter of stem


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climbing Mountains, Building Bridges is a rich theme for exploring some of the “challenges, obstacles, links, and connections” facing mathematics education within the current STEM climate (Science, Technology, Engineering and Mathematics). This paper first considers some of the issues and debates surrounding the nature of STEM education, including perspectives on its interdisciplinary nature. It is next argued that mathematics is in danger of being overshadowed, in particular by science, in the global urgency to advance STEM competencies in schools and the workforce. Some suggestions are offered for lifting the profile of mathematics education within an integrated STEM context, with examples drawn from modelling with data in the sixth grade.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports an innovative and systemic approach to implementing ICT intervention to support enhancement of teaching and learning of STEM subjects in developing countries. The need for adopting ICT was 2 fold: a lack of availability of qualified STEM secondary teachers and a lack of quality teaching and learning resources to assist teachers and students. ICT was seen as being able to impact on both issues. The intervention involved developing sustainable network design including equipment choices, providing high quality e-learning resources and human resource development including teacher training. The intervention has gradually been accepted by teachers, students, and parents and institutionalized as a key feature of the secondary STEM education in the case study country.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT The higher education sector plays an important role in encouraging students into the STEM pipeline through fostering partnerships with schools, building on universities long tradition in engagement and outreach to secondary schools. Numerous activities focus on integrated STEM learning experiences aimed at developing conceptual scientific and mathematical knowledge with opportunities for students to show and develop skills in working with each other and actively engaging in discussion, decision making and collaborative problem solving. (NAS, 2013; AIG, 2015; OCS, 2014). This highlights the importance of the development and delivery of engaging integrated STEM activities connected to the curriculum to inspire the next generation of scientists and engineers and generally preparing students for post-secondary success. The broad research objective is to gain insight into which engagement activities and to what level they influence secondary school students’ selection of STEM-related career choices at universities. PURPOSE OR GOAL To evaluate and determine the effectiveness of STEM engagement activities impacting student decision making in choosing a STEM-related degree choice at university. APPROACH A survey was conducted with first-year domestic students studying STEM-related fieldswithin the Science and Engineering Faculty at Queensland University of Technology. Of the domestic students commencing in 2015, 29% responded to the survey. The survey was conducted using Survey Monkey and included a variety of questions ranging from academic performance at school to inspiration for choosing a STEM degree. Responses were analysed on a range of factors to evaluate the influence on students’ decisions to study STEM and whether STEM high school engagement activities impacted these decisions. To achieve this the timing of decision making for students choice in study area, degree, and university is compared with the timing of STEM engagement activities. DISCUSSION Statistical analysis using SPSS was carried out on survey data looking at reasons for choosing STEM degrees in terms of gender, academic performance and major influencers in their decision making. It was found that students choose their university courses based on what subjects they enjoyed and exceled at in school. These results found a high correlation between enjoyment of a school subject and their interest in pursuing this subject at university and beyond. Survey results indicated students are heavily influenced by their subject teachers and parents in their choice of STEM-related disciplines. In terms of career choice and when students make their decision, 60% have decided on a broad area of study by year 10, whilst only 15% had decided on a specific course and 10% had decided on which university. The timing of secondary STEM engagement activities is seen as a critical influence on choosing STEM disciplines or selection of senior school subjects with 80% deciding on specific degree between year 11 and 12 and 73% making a decision on which university in year 12. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Although the data does not support that STEM engagement activities increase the likelihood of STEM-related degree choice, the evidence suggests the students who have participated in STEM activities associate their experiences with their choice to pursue a STEM-related course. It is important for universities to continue to provide quality engaging and inspirational learning experiences in STEM, to identify and build on students’ early interest and engagement, increase STEM knowledge and awareness, engage them in interdisciplinary project-based STEM practices, and provide them with real-world application experiences to sustain their interest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

- Background Nilotinib and dasatinib are now being considered as alternative treatments to imatinib as a first-line treatment of chronic myeloid leukaemia (CML). - Objective This technology assessment reviews the available evidence for the clinical effectiveness and cost-effectiveness of dasatinib, nilotinib and standard-dose imatinib for the first-line treatment of Philadelphia chromosome-positive CML. - Data sources Databases [including MEDLINE (Ovid), EMBASE, Current Controlled Trials, ClinicalTrials.gov, the US Food and Drug Administration website and the European Medicines Agency website] were searched from search end date of the last technology appraisal report on this topic in October 2002 to September 2011. - Review methods A systematic review of clinical effectiveness and cost-effectiveness studies; a review of surrogate relationships with survival; a review and critique of manufacturer submissions; and a model-based economic analysis. - Results Two clinical trials (dasatinib vs imatinib and nilotinib vs imatinib) were included in the effectiveness review. Survival was not significantly different for dasatinib or nilotinib compared with imatinib with the 24-month follow-up data available. The rates of complete cytogenetic response (CCyR) and major molecular response (MMR) were higher for patients receiving dasatinib than for those with imatinib for 12 months' follow-up (CCyR 83% vs 72%, p < 0.001; MMR 46% vs 28%, p < 0.0001). The rates of CCyR and MMR were higher for patients receiving nilotinib than for those receiving imatinib for 12 months' follow-up (CCyR 80% vs 65%, p < 0.001; MMR 44% vs 22%, p < 0.0001). An indirect comparison analysis showed no difference between dasatinib and nilotinib for CCyR or MMR rates for 12 months' follow-up (CCyR, odds ratio 1.09, 95% CI 0.61 to 1.92; MMR, odds ratio 1.28, 95% CI 0.77 to 2.16). There is observational association evidence from imatinib studies supporting the use of CCyR and MMR at 12 months as surrogates for overall all-cause survival and progression-free survival in patients with CML in chronic phase. In the cost-effectiveness modelling scenario, analyses were provided to reflect the extensive structural uncertainty and different approaches to estimating OS. First-line dasatinib is predicted to provide very poor value for money compared with first-line imatinib, with deterministic incremental cost-effectiveness ratios (ICERs) of between £256,000 and £450,000 per quality-adjusted life-year (QALY). Conversely, first-line nilotinib provided favourable ICERs at the willingness-to-pay threshold of £20,000-30,000 per QALY. - Limitations Immaturity of empirical trial data relative to life expectancy, forcing either reliance on surrogate relationships or cumulative survival/treatment duration assumptions. - Conclusions From the two trials available, dasatinib and nilotinib have a statistically significant advantage compared with imatinib as measured by MMR or CCyR. Taking into account the treatment pathways for patients with CML, i.e. assuming the use of second-line nilotinib, first-line nilotinib appears to be more cost-effective than first-line imatinib. Dasatinib was not cost-effective if decision thresholds of £20,000 per QALY or £30,000 per QALY were used, compared with imatinib and nilotinib. Uncertainty in the cost-effectiveness analysis would be substantially reduced with better and more UK-specific data on the incidence and cost of stem cell transplantation in patients with chronic CML. - Funding The Health Technology Assessment Programme of the National Institute for Health Research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This commentary was stimulated by Yeping Li's first editorial (2014) citing one of the journal's goals as adding multidisciplinary perspectives to current studies of single disciplines comprising the focus of other journals. In this commentary I argue for a greater focus on STEM integration, with a more equitable representation of the four disciplines in studies purporting to advance STEM learning. The STEM acronym is often used in reference to just one of the disciplines, commonly science. Although the integration of STEM disciplines is increasingly advocated in the literature, studies that address multiple disciplines appear scant with mixed findings and inadequate directions for STEM advancement. Perspectives on how discipline integration can be achieved are varied, with reference to multidisciplinary, interdisciplinary, and transdisciplinary approaches adding to the debates. Such approaches include core concepts and skills being taught separately in each discipline but housed within a common theme; the introduction of closely linked concepts and skills from two or more disciplines with the aim of deepening understanding and skills; and the adoption of a transdisciplinary approach, where knowledge and skills from two or more disciplines are applied to real-world problems and projects with the aim of shaping the total learning experience. Research that targets STEM integration is an embryonic field with respect to advancing curriculum development and various student outcomes. For example, we still need more studies on how student learning outcomes arise not only from different forms of STEM integration but also from the particular disciplines that are being integrated. As noted in this commentary, it seems that mathematics learning benefits less than the other disciplines in programs claiming to focus on STEM integration. Factors contributing to this finding warrant more scrutiny. Likewise, learning outcomes for engineering within K-12 integrated STEM programs appear under-researched. This commentary advocates a greater focus on these two disciplines within integrated STEM education research. Drawing on recommendations from the literature, suggestions are offered for addressing the challenges of integrating multiple disciplines faced by the STEM community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the wake of an almost decade long economic downturn and increasing competition from developing economies, a new agenda in the Australian Government for science, technology, engineering, and mathematics (STEM) education and research has emerged as a national priority. However, to art and design educators, the pervasiveness and apparent exclusivity of STEM can be viewed as another instance of art and design education being relegated to the margins of curriculum (Greene, 1995). In the spirit of interdisciplinarity, there have been some recent calls to expand STEM education to include the arts and design, transforming STEM into STEAM in education (Maeda, 2013). As with STEM, STEAM education emphasises the connections between previously disparate disciplines, meaning that education has been conceptualised in different ways, such as focusing on the creative design thinking process that is fundamental to engineering and art (Bequette & Bequette, 2012). In this article, we discuss divergent creative design thinking process and metacognitive skills, how, and why they may enhance learning in STEM and STEAM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The collaboration between universities and industries has become increasingly important for the development of Science and Technology. This is particularly more prominent in the Science Technology Engineering and Mathematics (STEM) disciplines. Literature suggest that the key element of University-Industry Partnership (UIP) is the exchange of knowledge that is mutually beneficial for both parties. One real example of the collaborations is Industry-Based Learning (IBL) in which university students are coming into industries to experience and learn how the skills and knowledge acquired in the classroom are implemented in work places. This paper investigate how the University-Industry Collaboration program is implemented though Industry-Based Learning (IBL) at Indonesian Universities. The research findings offer useful insights and create a new knowledge in the field of STEM education and collaborative learning. The research will contribute to existing knowledge by providing empirical understanding of this topic. The outcomes can be used to improve the quality of University-Industry Partnership programs at Indonesian Universities and inform Indonesian higher education authorities and their industrial partners of an alternative approach to enhance their IBL programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

- Background Sonography is an important diagnostic tool in children with suspected appendicitis. Reported accuracy and appendiceal visualisation rates vary significantly, as does the management of equivocal ultrasound findings. The aim of this study was to audit appendiceal sonography at a tertiary children's hospital, and provide baseline data for a future prospective study. - Summary of work Records of children who underwent ultrasound studies for possible appendicitis between January 2008 and December 2010 were reviewed. Variables included patient demographics, sonographic appendix characteristics, and secondary signs. Descriptive statistics and analysis using ANOVA, Mann-Whitney U test, and ROC curves were performed. Mater Human Research Ethic Committee approval was granted. - Summary of results There were 457 eligible children. Using a dichotomous diagnostic model (including equivocal results), sensitivity was 89.6%, specificity 91.6%, and diagnostic yield of 40.7%. ROC curve analysis of a 6mm diameter cut-off was 0.88 AUC (95% CI 0.80 to 0.95). - Discussion and conclusions Sonography is an accurate test for acute appendicitis in children, with a high sensitivity and negative predictive value. A diameter of 6mm as an absolute cut-off in a binary model can lead to false findings. Results were compared with available literature. Recent publications propose categorising diameter1 and integrating secondary signs2 to improve accuracy and provide more meaningful results to clinicians. This study will be a benchmark for future studies with multiple diagnostic categorisation.