97 resultados para consistent and asymptotically normal estimators
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.
Resumo:
There remains a lack of published empirical data on the substantive outcomes of higher learning and the establishment of quality processes for determining them. Studies that do exist are nationally focused with available rankings of institutions reflecting neither the quality of teaching and learning nor the diversity of institutions. This paper describes two studies in which Associate Deans from Australian higher education institutions and focus groups of management and academics identify current issues and practices in the design, development and implementation of processes for assuring the quality of learning and teaching. Results indicate that developing a perspective on graduate attributes and mapping assessments to measure outcomes across an entire program necessitates knowledge creation and new inclusive processes. Common elements supporting consistently superior outcomes included: inclusivity; embedded graduate attributes; consistent and appropriate assessment; digital collection mechanisms; and systematic analysis of outcomes used in program review. Quality measures for assuring learning are proliferating nationally and changing the processes, systems and culture of higher education as a result.
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
Consensual stereotypes of some groups are relatively accurate, whereas others are not. Previous work suggesting that national character stereotypes are inaccurate has been criticized on several grounds. In this article we (a) provide arguments for the validity of assessed national mean trait levels as criteria for evaluating stereotype accuracy and (b) report new data on national character in 26 cultures from descriptions (N= 3323) of the typical male or female adolescent, adult, or old person in each. The average ratings were internally consistent and converged with independent stereotypes of the typical culture member, but were weakly related to objective assessments of personality. We argue that this conclusion is consistent with the broader literature on the inaccuracy of national character stereotypes
Resumo:
Sustainability is a key driver for decisions in the management and future development of organisations and industries. However, quantifying and comparing sustainability across the triple bottom line (TBL) of economy, environment and social impact, has been problematic. There is a need for a tool which can measure the complex interactions within and between the environmental, economic and social systems which affect the sustainability of an industry in a transparent, consistent and comparable way. The authors acknowledge that there are currently numerous ways in which sustainability is measured and multiple methodologies in how these measurement tools were designed. The purpose of this book is to showcase how Bayesian network modelling can be used to identify and measure environmental, economic and social sustainability variables and to understand their impact on and interaction with each other. This book introduces the Sustainability Scorecard, and describes it through a case study on sustainability of the Australian dairy industry. This study was conducted in collaboration with the Australian dairy industry.
Resumo:
A key concept for the centralized provision of Business Process Management (BPM) is the Center of Excellence (CoE). Organizations establish a CoE (aka BPM Support Office) as their BPM maturity increases in order to ensure a consistent and cost-effective way of offering BPM services. The definition of the offerings of such a center and the allocation of roles and responsibilities play an important role within BPM Governance. In order to plan the role of such a BPM CoE, this chapter proposes the productization of BPM leading to a set of fifteen distinct BPM services. A portfolio management approach is suggested to position these services. The approach allows identifying specific normative strategies for each BPM service, such as further training or BPM communication and marketing. A public sector case study provides further insights into how this approach has been used in practice. Empirical evidence from a survey with 15 organizations confirms the coverage of this set of BPM services and shows typical profiles for such BPM Centers of Excellence.
Resumo:
Performance guarantees for online learning algorithms typically take the form of regret bounds, which express that the cumulative loss overhead compared to the best expert in hindsight is small. In the common case of large but structured expert sets we typically wish to keep the regret especially small compared to simple experts, at the cost of modest additional overhead compared to more complex others. We study which such regret trade-offs can be achieved, and how. We analyse regret w.r.t. each individual expert as a multi-objective criterion in the simple but fundamental case of absolute loss. We characterise the achievable and Pareto optimal trade-offs, and the corresponding optimal strategies for each sample size both exactly for each finite horizon and asymptotically.
Resumo:
This study investigated the clinicopathologic roles of mammalian target of rapamycin (mTOR) expression and its relationship to carcinogenesis and tumor progression in a colorectal adenoma-adenocarcinoma model. Two colon cancer cell lines with different pathologic stages (SW480 and SW48) and 1 normal colonic epithelial cell line (FHC) were used, in addition to 119 colorectal adenocarcinomas and 32 adenomas. mTOR expression profiles at messenger RNA (mRNA) and protein levels were investigated in the cells and tissues using real-time quantification polymerase chain reaction and immunohistochemistry. The findings were correlated with the clinicopathologic features of the tumors. The colon cell line from stage III cancer (SW48) showed higher expression of mTOR mRNA than that from stage II cancer (SW480). At the tissue level, mTOR showed higher mRNA and protein expression in colorectal carcinoma than in adenoma. The mRNA and protein expression was correlated with each other in approximately one-third of the carcinomas and adenomas. High levels of mTOR mRNA expression were noted more in carcinoma or adenoma arising from the distal portion of the large intestine (P = .025 and .019, respectively). Within the colorectal cancer population, a high level of expression of mTOR mRNA was related to the presence of lymph node metastases (P = .031), advanced pathologic stage (P = .05), and presence of persistent disease or tumor recurrence (P = .035). To conclude, the study has indicated that mTOR is likely to be involved in the development and progression of colorectal cancer and is linked to cancer initiation, invasiveness, and progression.
Resumo:
Poor compliance with speed limits is a serious safety concern in work zones. Most studies of work zone speeds have focused on descriptive analyses and statistical testing without systematically capturing the effects of vehicle and traffic characteristics. Consequently, little is known about how the characteristics of surrounding traffic and platoons influence speeds. This paper develops a Tobit regression technique for innovatively modeling the probability and the magnitude of non-compliance with speed limits at various locations in work zones. Speed data is transformed into two groups—continuous for non-compliant and left-censored for compliant drivers—to model in a Tobit model framework. The modeling technique is illustrated using speed data from three long-term highway work zones in Queensland, Australia. Consistent and plausible model estimates across the three work zones support the appropriateness and validity of the technique. The results show that the probability and magnitude of speeding was higher for leaders of platoons with larger front gaps, during late afternoon and early morning, when traffic volumes were higher, and when higher proportions of surrounding vehicles were non-compliant. Light vehicles and their followers were also more likely to speed than others. Speeding was more common and greater in magnitude upstream than in the activity area, with higher compliance rates close to the end of the activity area and close to stop/slow traffic controllers. The modeling technique and results have great potential to assist in deployment of appropriate countermeasures by better identifying the traffic characteristics associated with speeding and the locations of lower compliance.
Resumo:
A new online method is presented for estimation of the angular randomwalk and rate randomwalk coefficients of inertial measurement unit gyros and accelerometers. In the online method, a state-space model is proposed, and recursive parameter estimators are proposed for quantities previously measured from offline data techniques such as the Allan variance method. The Allan variance method has large offline computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of approximately 100 calculations per data sample.
Resumo:
A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O(100) calculations per data sample.
Resumo:
Summary 1. Acoustic methods are used increasingly to survey and monitor bat populations. However, the use of acoustic methods at continental scales can be hampered by the lack of standardized and objective methods to identify all species recorded. This makes comparable continent-wide monitoring difficult, impeding progress towards developing biodiversity indicators, transboundary conservation programmes and monitoring species distribution changes. 2. Here we developed a continental-scale classifier for acoustic identification of bats, which can be used throughout Europe to ensure objective, consistent and comparable species identifications. We selected 1350 full-spectrum reference calls from a set of 15 858 calls of 34 European species, from EchoBank, a global echolocation call library. We assessed 24 call parameters to evaluate how well they distinguish between species and used the 12 most useful to train a hierarchy of ensembles of artificial neural networks to distinguish the echolocation calls of these bat species. 3. Calls are first classified to one of five call-type groups, with a median accuracy of 97·6%. The median species-level classification accuracy is 83·7%, providing robust classification for most European species, and an estimate of classification error for each species. 4. These classifiers were packaged into an online tool, iBatsID, which is freely available, enabling anyone to classify European calls in an objective and consistent way, allowing standardized acoustic identification across the continent. 5. Synthesis and applications. iBatsID is the first freely available and easily accessible continental- scale bat call classifier, providing the basis for standardized, continental acoustic bat monitoring in Europe. This method can provide key information to managers and conservation planners on distribution changes and changes in bat species activity through time.
Resumo:
The estimation of the critical gap has been an issue since the 1970s, when gap acceptance was introduced to evaluate the capacity of unsignalized intersections. The critical gap is the shortest gap that a driver is assumed to accept. A driver’s critical gap cannot be measured directly and a number of techniques have been developed to estimate the mean critical gaps of a sample of drivers. This paper reviews the ability of the Maximum Likelihood technique and the Probability Equilibrium Method to predict the mean and standard deviation of the critical gap with a simulation of 100 drivers, repeated 100 times for each flow condition. The Maximum Likelihood method gave consistent and unbiased estimates of the mean critical gap. Whereas the probability equilibrium method had a significant bias that was dependent on the flow in the priority stream. Both methods were reasonably consistent, although the Maximum Likelihood Method was slightly better. If drivers are inconsistent, then again the Maximum Likelihood method is superior. A criticism levelled at the Maximum Likelihood method is that a distribution of the critical gap has to be assumed. It was shown that this does not significantly affect its ability to predict the mean and standard deviation of the critical gaps. Finally, the Maximum Likelihood method can predict reasonable estimates with observations for 25 to 30 drivers. A spreadsheet procedure for using the Maximum Likelihood method is provided in this paper. The PEM can be improved if the maximum rejected gap is used.
Resumo:
Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.