218 resultados para beam parameter products
Resumo:
In many bridges, vertical displacements are the most relevant parameter for monitoring in the both short and long term. However, it is difficult to measure vertical displacements of bridges and yet they are among the most important indicators of structural behaviour. Therefore, it prompts a need to develop a simple, inexpensive and yet more practical method to measure vertical displacements of bridges. With the development of fiber-optics technologies, fiber Bragg grating (FBG) sensors have been widely used in structural health monitoring. The advantages of these sensors over the conventional sensors include multiplexing capabilities, high sample rate, small size and electro magnetic interference (EMI) immunity. In this paper, methods of vertical displacement measurements of bridges are first reviewed. Then, FBG technology is briefly introduced including principle, sensing system, characteristics and different types of FBG sensors. Finally, the methodology of vertical displacement measurements using FBG sensors is presented and a trial test is described. It is concluded that using FBG sensors is feasible to measure vertical displacements of bridges. This method can be used to understand global behaviour of bridge‘s span and can further develop for structural health monitoring techniques such as damage detection.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward. We consider two notions of optimality based on optimistic and pessimistic criteria. These have been analyzed for discounted BMDPs. Here we provide results for average reward BMDPs. We establish a fundamental relationship between the discounted and the average reward problems, prove the existence of Blackwell optimal policies and, for both notions of optimality, derive algorithms that converge to the optimal value function.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
Beam steering with high front-to-back ratio and high directivity on a small platform is proposed. Two closely spaced antenna pairs with eigenmode port decoupling are used as the basic radiating elements. Two orthogonal radiation patterns are obtained for each antenna pair. High front-to-back ratio and high directivity are achieved by combining the two orthogonal radiation patterns. With an infinite groundplane, a front-to-back ratio of 21 dB with a directivity of 9.8 dB can be achieved. Beam steering, at the expense of a slight decrease in directivity, is achieved by placing the two antenna pairs 0.5λ apart. The simulated half power beamwidth is 58°. A prototype was designed and the 2-D radiation patterns were measured. The prototype supports three directions of beam steering. The half power beamwidth was measured as 46°, 48°, and 50° for the three respective beam directions. The measured front-to-back ratio in azimuth plane is 8.5 dB, 8.0 dB and 7.6 dB, respectively.
Resumo:
Blurb: This empirical study analysed consumer emotional responses towards interactive products, specifically looking at properties that persuasively induce the pursuit of pleasure at an instinctual level of cognition, now known as ‘visceral hedonic rhetoric'. By analysing three different types of interactive products results found hierarchical and inter-relatable attributes with the potential to provide a positive consumer-product relationship that is more meaningful, less disposable and more sustainable in the future.
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.