94 resultados para band ratio
Resumo:
Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. Methods: In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. Results: When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. Conclusions: In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.
Resumo:
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm−1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm−1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.
Resumo:
Tooeleite is an unique ferric arsenite sulfate mineral, which has the potential significance of directly fixing As(III) as mineral trap. The tooeleite and various precipitates were hydrothermally synthesized under the different of initial As(III)/As(V) molar ratios and characterized by XRD, FTIR, XPS and SEM. The crystallinity of tooeleite decreases with the amount of As(V). The precipitate is free of any crystalline tooeleite at the level of that XRD could detect when the ratio of As(III)/As(V) of 7:3 and more. The characteristic bands of tooeleite are observed in 772, 340, 696 and 304 cm−1, which are assigned to the ν1, ν2, ν3 and ν4 vibrations of AsO33−. These intensities of bands gradually decreases with the presence of As(V) and its increasing. An obviously wide band is observed in 830 cm−1, which is the ν1 vibration of AsO4. The result of XPS reveals that the binding energies of As3d increase from 44.0 eV to 45.5 eV, which indicates that the amount of As(V) in the precipitates increases. The concentrations of arsenic released of these precipitates are 350–650 mg/L. The stability of tooeleite decreases by comparison when the presence of coexisting As(V) ions.
Resumo:
In this paper, a novel 2×2 multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) testbed based on an Analog Devices AD9361 highly integrated radio frequency (RF) agile transceiver was specifically implemented for the purpose of estimating and analyzing MIMO-OFDM channel capacity in vehicle-to-infrastructure (V2I) environments using the 920 MHz industrial, scientific, and medical (ISM) band. We implemented two-dimensional discrete cosine transform-based filtering to reduce the channel estimation errors and show its effectiveness on our measurement results. We have also analyzed the effects of channel estimation error on the MIMO channel capacity by simulation. Three different scenarios of subcarrier spacing were investigated which correspond to IEEE 802.11p, Long-Term Evolution (LTE), and Digital Video Broadcasting Terrestrial (DVB-T)(2k) standards. An extensive MIMO-OFDM V2I channel measurement campaign was performed in a suburban environment. Analysis of the measured MIMO channel capacity results as a function of the transmitter-to-receiver (TX-RX) separation distance up to 250 m shows that the variance of the MIMO channel capacity is larger for the near-range line-of-sight (LOS) scenarios than for the long-range non-LOS cases, using a fixed receiver signal-to-noise ratio (SNR) criterion. We observed that the largest capacity values were achieved at LOS propagation despite the common assumption of a degenerated MIMO channel in LOS. We consider that this is due to the large angular spacing between MIMO subchannels which occurs when the receiver vehicle rooftop antennas pass by the fixed transmitter antennas at close range, causing MIMO subchannels to be orthogonal. In addition, analysis on the effects of different subcarrier spacings on MIMO-OFDM channel capacity showed negligible differences in mean channel capacity for the subcarrier spacing range investigated. Measured channels described in this paper are available on request.
Resumo:
This study uses the reverse salient methodology to contrast subsystems in video game consoles in order to discover, characterize, and forecast the most significant technology gap. We build on the current methodologies (Performance Gap and Time Gap) for measuring the magnitude of Reverse Salience, by showing the effectiveness of Performance Gap Ratio (PGR). The three subject subsystems in this analysis are the CPU Score, GPU core frequency, and video memory bandwidth. CPU Score is a metric developed for this project, which is the product of the core frequency, number of parallel cores, and instruction size. We measure the Performance Gap of each subsystem against concurrently available PC hardware on the market. Using PGR, we normalize the evolution of these technologies for comparative analysis. The results indicate that while CPU performance has historically been the Reverse Salient, video memory bandwidth has taken over as the quickest growing technology gap in the current generation. Finally, we create a technology forecasting model that shows how much the video RAM bandwidth gap will grow through 2019 should the current trend continue. This analysis can assist console developers in assigning resources to the next generation of platforms, which will ultimately result in longer hardware life cycles.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10 -11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
Resumo:
To identify susceptibility loci for visceral leishmaniasis, we undertook genome-wide association studies in two populations: 989 cases and 1,089 controls from India and 357 cases in 308 Brazilian families (1,970 individuals). The HLA-DRB1-HLA-DQA1 locus was the only region to show strong evidence of association in both populations. Replication at this region was undertaken in a second Indian population comprising 941 cases and 990 controls, and combined analysis across the three cohorts for rs9271858 at this locus showed P combined = 2.76 × 10 -17 and odds ratio (OR) = 1.41, 95% confidence interval (CI) = 1.30-1.52. A conditional analysis provided evidence for multiple associations within the HLA-DRB1-HLA-DQA1 region, and a model in which risk differed between three groups of haplotypes better explained the signal and was significant in the Indian discovery and replication cohorts. In conclusion, the HLA-DRB1-HLA-DQA1 HLA class II region contributes to visceral leishmaniasis susceptibility in India and Brazil, suggesting shared genetic risk factors for visceral leishmaniasis that cross the epidemiological divides of geography and parasite species. © 2013 Nature America, Inc. All rights reserved.
Resumo:
Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (P combined = 4.09 × 10-9; odds ratio (OR) = 1.21, 95% confidence interval (CI) =1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (P combined = 2.74 × 10-10; OR = 1.14, 95% CI = 1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus. © 2012 Nature America, Inc. All rights reserved.
Resumo:
This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.
Resumo:
The ratio of the lengths of an individual's second to fourth digit (2D:4D) is commonly used as a noninvasive retrospective biomarker for prenatal androgen exposure. In order to identify the genetic determinants of 2D:4D, we applied a genome-wide association approach to 1507 11-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in whom 2D:4D ratio had been measured, as well as a sample of 1382 12- to 16-year-olds from the Brisbane Adolescent Twin Study. A meta-analysis of the two scans identified a single variant in the LIN28B gene that was strongly associated with 2D:4D (rs314277: p = 4.1 x 10(-8)) and was subsequently independently replicated in an additional 3659 children from the ALSPAC cohort (p = 1.53 x 10(-6)). The minor allele of the rs314277 variant has previously been linked to increased height and delayed age at menarche, but in our study it was associated with increased 2D:4D in the direction opposite to that of previous reports on the correlation between 2D:4D and age at menarche. Our findings call into question the validity of 2D:4D as a simplistic retrospective biomarker for prenatal testosterone exposure.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.