254 resultados para amphibian protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CDKN2A gene encodes p16 (CDKN2A), a cell-cycle inhibitor protein which prevents inappropriate cell cycling and, hence, proliferation. Germ-line mutations in CDKN2A predispose to the familial atypical multiple-mole melanoma (FAMMM) syndrome but also have been seen in rare families in which only 1 or 2 individuals are affected by cutaneous malignant melanoma (CMM). We therefore sequenced exons 1alpha and 2 of CDKN2A using lymphocyte DNA isolated from index cases from 67 families with cancers at multiple sites, where the patterns of cancer did not resemble those attributable to known genes such as hMLH1, hMLH2, BRCA1, BRCA2, TP53 or other cancer susceptibility genes. We found one mutation, a mis-sense mutation resulting in a methionine to isoleucine change at codon 53 (M531) of exon 2. The individual tested had developed 2 CMMs but had no dysplastic nevi and lacked a family history of dysplastic nevi or CMM. Other family members had been diagnosed with oral cancer (2 persons), bladder cancer (1 person) and possibly gall-bladder cancer. While this mutation has been reported in Australian and North American melanoma kindreds, we did not observe it in 618 chromosomes from Scottish and Canadian controls. Functional studies revealed that the CDKN2A variant carrying the M531 change was unable to bind effectively to CDK4, showing that this mutation is of pathological significance. Our results have confirmed that CDKN2A mutations are not limited to FAMMM kindreds but also demonstrate that multi-site cancer families without melanoma are very unlikely to contain CDKN2A mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge for Streptococcus pyogenes vaccine development is the identification of epitopes that confer protection from infection by multiple S. pyogenes M-types. Here we have identified and characterised the distribution of common variant sequences from individual repeat units of the C-repeat region (CRR) of M-proteins representing 77 different M-types. Three polyvalent fusion vaccine candidates (SV1, SV2 and SV3) incorporating the most common variants were subsequently expressed and purified, and demonstrated to be alpha-helical by Circular Dichroism (CD), a secondary conformational characteristic of the CRR in the M-protein. Antibodies raised against each of these constructs recognise M-proteins that vary in their CRR, and bind to the surface of multiple S. pyogenes isolates. Antibodies raised against SV1, containing five variant sequences, also kill heterologous S. pyogenes isolates in in vitro bactericidal assays. Further structural characterisation of this construct demonstrated the conformation of SV1 was stable at different pHs, and thermal unfolding of SV1 a reversible process. Our findings demonstrate that linkage of multiple variant sequences into a single recombinant construct overcomes the need to embed the variant sequences in foreign helix promoting flanking sequences for conformational stability, and demonstrates the viability of the polyvalent candidates as global S. pyogenes vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise protein quantification is essential in clinical dietetics, particularly in the management of renal, burn and malnourished patients. The EP-10 was developed to expedite the estimation of dietary protein for nutritional assessment and recommendation. The main objective of this study was to compare the validity and efficacy of the EP-10 with the American Dietetic Association’s “Exchange List for Meal Planning” (ADA-7g) in quantifying dietary protein intake, against computerised nutrient analysis (CNA). Protein intake of 197 food records kept by healthy adult subjects in Singapore was determined thrice using three different methods – (1) EP-10, (2) ADA-7g and (3) CNA using SERVE program (Version 4.0). Assessments using the EP-10 and ADA-7g were performed by two assessors in a blind crossover manner while a third assessor performed the CNA. All assessors were blind to each other’s results. Time taken to assess a subsample (n=165) using the EP-10 and ADA-7g was also recorded. Mean difference in protein intake quantification when compared to the CNA was statistically non-significant for the EP-10 (1.4 ± 16.3 g, P = .239) and statistically significant for the ADA-7g (-2.2 ± 15.6 g, P = .046). Both the EP-10 and ADA-7g had clinically acceptable agreement with the CNA as determined via Bland-Altman plots, although it was found that EP-10 had a tendency to overestimate with protein intakes above 150 g. The EP-10 required significantly less time for protein intake quantification than the ADA-7g (mean time of 65 ± 36 seconds vs. 111 ± 40 seconds, P < .001). The EP-10 and ADA-7g are valid clinical tools for protein intake quantification in an Asian context, with EP-10 being more time efficient. However, a dietician’s discretion is needed when the EP-10 is used on protein intakes above 150g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, β-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with β-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with β-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with β-catenin and E-cadherin from a higher molecular weight complex (~500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, β-catenin or E-cadherin, which were predominantly in a larger molecular weight complex (~2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased β-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and β-catenin during trafficking to the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.