399 resultados para alternative lease structures
Seismic performance of brick infilled RC frame structures in low and medium rise buildings in Bhutan
Resumo:
The construction of reinforced concrete buildings with unreinforced infill is common practice even in seismically active country such as Bhutan, which is located in high seismic region of Eastern Himalaya. All buildings constructed prior 1998 were constructed without seismic provisions while those constructed after this period adopted seismic codes of neighbouring country, India. However, the codes have limited information on the design of infilled structures besides having differences in architectural requirements which may compound the structural problems. Although the influence of infill on the reinforced concrete framed structures is known, the present seismic codes do not consider it due to the lack of sufficient information. Time history analyses were performed to study the influence of infill on the performance of concrete framed structures. Important parameters were considered and the results presented in a manner that can be used by practitioners. The results show that the influence of infill on the structural performance is significant. The structural responses such as fundamental period, roof displacement, inter-storey drift ratio, stresses in infill wall and structural member forces of beams and column generally reduce, with incorporation of infill wall. The structures designed and constructed with or without seismic provision perform in a similar manner if the infills of high strength are used.
Resumo:
Work-integrated learning in the form of internships is increasingly important for universities as they seek to compete for students, and seek links with industries. Yet, there is surprisingly little empirical research on the details of internships: (1) What they should accomplish? How they should be structure? (3) How students performance should be assess? There is also surprisingly little conceptual analysis of these key issues, either for business internships in general. or for marketing internships in particular. Furthermore, the "answers" on these issues may differ depending upon the perspective if the three stakeholders: students, business managers and university academics. There is not study in the marketing literature which surveys all three groups on these important aspects of internships. To fill these gaps, this paper discusses and analyses internships goals, internship structure, and internship assessment or undergraduate marketing internships, and then reports on a survey of the views of all three stakeholder groups on these issues. There are a considerable variety of approaches for internships, but generally there is consensus among the stake holder groups, with some notable differences. Managerial implication include recognition of the importance of having and academic aspects in internships; mutual understanding concerning needs and constraints; and the requirement that companies, students, and academics take a long-term view of internship programs to achieve mutually beneficial outcomes.
Resumo:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.
Resumo:
Noise and vibration in complex ship structures are becoming a prominent issue for ship building industry and ship companies due to the constant demand of building faster ships of lighter weight, and the stringent noise and libration regulation of the industry. In order to retain the full benefit of building faster ships without compromising too much on ride comfort and safety, noise and vibration control needs to be implemented. Due to the complexity of ship structures, the coupling of different wave types and multiple wave propagation paths, active control of global hull modes is difficult to implement and very expensive. Traditional passive control such as adding damping materials is only effective in the high frequency range. However, most severe damage to ship structures is caused by large structural deformation of hull structures and high dynamic stress concentration at low frequencies. The most discomfort and fatigue of passengers and the crew onboard ships is also due to the low frequency noise and vibration. Innovative approaches are therefore, required to attenuate the noise and vibration at low frequencies. This book was developed from several specialized research topics on vibration and vibration control of ship structures, mostly from the author's own PhD work at the University of Western Australia. The book aims to provide a better understanding of vibration characteristics of ribbed plate structures, plate/plate coupled structures and the mechanism governing wave propagation and attenuation in periodic and irregular ribbed structures as well as in complex ship structures. The book is designed to be a reference book for ship builders, vibro-acoustic engineers and researchers. The author also hopes that the book can stimulate more exciting future work in this area of research. It is the author's humble desire that the book can be some use for those who purchase it. This book is divided into eight chapters. Each chapter focuses on providing solution to address a particular issue on vibration problems of ship structures. A brief summary of each chapter is given in the general introduction. All chapters are inter-dependent to each other to form an integration volume on the subject of vibration and vibration control of ship structures and alike. I am in debt to many people in completing this work. In particular, I would like to thank Professor J. Pan, Dr N.H. Farag, Dr K. Sum and many others from the University of Western Australia for useful advices and helps during my times at the University and beyond. I would also like to thank my wife, Miaoling Wang, my children, Anita, Sophia and Angela Lin, for their sacrifice and continuing supports to make this work possible. Financial supports from Australian Research Council, Australian Defense Science and Technology Organization and Strategic Marine Pty Ltd at Western Australia for this work is gratefully acknowledged.
Resumo:
1,2-Bis[10,15-di(3,5-di-tert-butyl)phenylporphyrinatonickel(II)-5-yl]diazene was synthesised via copper catalysed coupling of aminated nickel(II) 5,10-diarylporphyrin (“corner porphyrin”) and its X-ray crystal structure was determined. Two different crystals yielded different structures, one with the free meso positions in a trans-like orientation, and the other with a cis-like disposition. The free meso positions of the obtained dimer have been further functionalised while the synthesis of a zinc analogue has so far been unsuccessful. The X-ray crystal structure of the dinitro derivative of the dinickel(II) azoporphyrin was determined, and the structure showed a cis-like disposition of the nitro groups.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].
Resumo:
High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.
Resumo:
Typically a film producer expects the director and actors to 'do their job' within a scheduled timeframe. Rather than expecting the creative principals to just deliver, a production model can be tailored to help this creative team produce successful outcomes. This research paper contrasts alternative production models with a traditional (or standard) production and presents possibilities for producers to emphasise the collaborative potential for their production.
Resumo:
We analyse the puzzling behavior of the volatility of individual stock returns around the turn of the Millennium. There has been much academic interest in this topic, but no convincing explanation has arisen. Our goal is to pull together the many competing explanations currently proposed in the literature to delermine which, if any, are capable of explaining the volatility trend. We find that many of the different explanations capture the same unusual trend around the Millennium. We find that many of the variables are very highly correlated and it is thus difficult to disentangle their relalive ability to exlplain the time-series behavior in volatility. It seems thai all of the variables that track average volatility well do so mainly by capturing changes in the post-1994 period. These variables have no time-series explanatory power in the pre-1995 years, questioning the underlying idea that any of the explanations currently plesented in the literature can track the trend in volatility over long periods.
Resumo:
The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate C~6~H~16~N^+^ C~8~H~3~Cl~2~O~4~^-^ (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate C~4~H~12~N^+^ C~8~H~3~Cl~2~O~4~^-^ (II), bis(n-butylaminium) 4,5-dichlorophthalate monohydrate 2(C~4~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (III) and bis(piperidinium) 4,5-dichlorophthalate monohydrate 2(C~5~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (IV)have been determined at 200 K. All compounds have hydrogen-bonding associations giving in (I) discrete cation-anion units, linear chains in (II) while (III) and (IV) both have two-dimensional structures. In (I) a discrete cation-anion unit is formed through an asymmetric R2/1(4) N+-H...O,O' hydrogen-bonding association whereas in (II), one-dimensional chains are formed through linear N-H...O associations by both aminium H donors. In compounds (III) and (IV) the primary N-H...O linked cation-anion units are extended into a two-dimensional sheet structure via amide N-H...O(carboxyl) and ...O(carbonyl) interactions. In the 1:1 salts [(I) and (II)], the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxylic acid O-H...O(carboxyl) hydrogen bonds [O...O, 2.4223(14) and 2.388(2)A respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.
Resumo:
The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.
Resumo:
This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.