247 resultados para active transportation
Resumo:
This paper presents background of our research and result of our pilot study to find methods for convincing building users to become active building participants. We speculate this is possible by allowing and motivating users to customise and manage their own built environments. The ultimate aim of this research is to develop open, flexible and adaptive systems that bring awareness to building users to the extent they recognise spaces are for them to change rather than accept spaces are fixed and they are the ones to adapt. We argue this is possible if the architectural hardware is designed to adapt to begin with and more importantly if there are appropriate user interfaces that are designed to work with the hardware. A series of simple prototypes were made to study possibilities through making, installing and experiencing them. Ideas discussed during making and experiencing of prototypes were evaluated to generate further ideas. This method was very useful to speculate unexplored and unknown issues with respect to developing user interfaces for active buildings.
Resumo:
The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
The importance of mitogen-activated protein kinase signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf, yet clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been correlated with melanoma development and progression; a thorough assessment of tumor-initiating effects of activated Notch on human melanocytes would clarify the mounting correlative evidence and perhaps identify a novel target for an otherwise untreatable disease. Analysis of a substantial panel of cell lines and patient lesions showed that Notch activity is significantly higher in melanomas than their nontransformed counterparts. The use of a constitutively active, truncated Notch transgene construct (N(IC)) was exploited to determine if Notch activation is a "driving" event in melanocytic transformation or instead a "passenger" event associated with melanoma progression. N(IC)-infected melanocytes displayed increased proliferative capacity and biological features more reminiscent of melanoma, such as dysregulated cell adhesion and migration. Gene expression analyses supported these observations and aided in the identification of MCAM, an adhesion molecule associated with acquisition of the malignant phenotype, as a direct target of Notch transactivation. N(IC)-positive melanocytes grew at clonal density, proliferated in limiting media conditions, and also exhibited anchorage-independent growth, suggesting that Notch alone is a transforming oncogene in human melanocytes, a phenomenon not previously described for any melanoma oncogene. This new information yields valuable insight into the basic epidemiology of melanoma and launches a realm of possibilities for drug intervention in this deadly disease.
Resumo:
Railway level crossings are amongst the most complex of road safety control systems, due to the conflicts between road vehicles and rail infrastructure, trains and train operations. Driver behaviour at railway crossings is the major collision factor. The main objective of the present paper was to evaluate the existing conventional warning devices in relation to driver behaviour. The common conventional warning devices in Australia are a stop sign (passive), flashing lights and a half boom-barrier with flashing lights (active). The data were collected using two approaches, namely: field video recordings at selected sites and a driving simulator in a laboratory. This paper describes and compares the driver response results from both the field survey and the driving simulator. The conclusion drawn is that different types of warning systems resulted in varying driver responses at crossings. The results showed that on average driver responses to passive crossings were poor when compared to active ones. The field results were consistent with the simulator results for the existing conventional warning devices and hence they may be used to calibrate the simulator for further evaluation of alternative warning systems.
Resumo:
Aim: Increased car dependency amongst Australia's ageing population may result in increased social isolation and other health impacts associated with the cessation of driving. While public transport represents an alternative to car usage, patronage remains low amongst senior cohorts. This study investigates the facilitators and barriers to public transport patronage and the nature of car dependence among older Australians. Method: Data was gathered from a sample of 24 adults (mean = 70.33 years) through a combination of quantitative (remote behavioural observation) and qualitative (interviews) investigation. Results: Findings suggest factors of relative convenience, affordability and health/mobility dictate choices of transport mode. The car is considered more convenient for the majority of suburban trips irrespective of the availability of public transport. Conclusion: Policy attention should focus on providing better education and information regarding driving cessation and addressing aged-specific social aspects of public transport including the accommodation of various health and mobility issues.
Resumo:
Although, transportation disadvantage or imbalance between travel needs and supply of transportation system is a great harm to knowledge based environments, quantification and objectively measuring the state of transportation disadvantaged remain to be a great challenge for researcher due to its ambiguity. This poses questions of whether the current indicators are accurately linked with transportation disadvantages and the effectiveness of the current policies. Using current indicators of transportation disadvantages, the state of transportation disadvantage is often exaggerated due to limited afford has been put forward to provide clear assessment on the existed relationship between transportation disadvantage indicators with travel performance or capability. This paper proposes a structural equation model of transportation disadvantage using household variables gained from the 2006-2008 South-East Queensland Travel Survey (SEQTS). The underlying relationships between social economics and demographic characteristics of household with travel performance are modelled using a latent variable approach. The final model has been able to fit the data gathered from SEQTS and explained established links between key household factors with travel capability and determined key indicator of travel capability. The model recognises that travel capability is directly influenced by household factors; vehicle ratio, license possession, retirees and pensioners.
Resumo:
Young drivers, aged 17 to 24 years, have the highest fatality rate in Australia. It is believed that part of this risk is due to pressure from peer passengers to engage in speeding; which may be active (i.e., verbal encouragement) or passive (i.e., perceived pressure on the part of the driver). The Theory of Planned Behaviour (TPB) was used to investigate this impact of peer passengers on young drivers, particularly the influence of the type of peer pressure and a driver’s level of identification with their passengers. A scenario-based questionnaire was constructed, informed by focus groups and pilot studies, and distributed to university students (N = 398). The questionnaire measured participants’ intentions and the TPB constructs, including two components of perceived behaviour control, within a baseline scenario as well as an experimental scenario in which the variables of type of pressure and identification were manipulated. Consistent with the hypotheses, the study found that attitudes and self-efficacy significantly predicted intentions over and above the variance explained by the sociodemographic variables of age, gender, self-esteem, sensation seeking, as well as past behaviour and exposure. Across the scenarios, attitudes explained between 4.3% and 14.5%, while self-efficacy to refrain from speeding explained between 4.9% and 17.1%, of the unique variance in intentions to speed. However, contrary to expectations, intentions to speed were found to be higher in the “no passenger” than “passenger present” conditions, although this finding is not completely inconsistent with recent literature. A high level of identification with passengers led to higher intentions to speed than low identification as expected, but, inconsistent with expectations, different types of pressure (i.e., active versus passive) did not influence intentions to speed.
Resumo:
On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.
Resumo:
Background: Considerable attention is currently being directed towards both active ageing and the revising of standards for disability services within Australia and internationally. Yet, to date, no consideration appears to have been given to ways to promote active ageing among older adults with intellectual disabilities. Methods: Semi-structured interviews were conducted with 16 Australian professional direct-care support staff (service providers) about their perceptions of ageing among older adults with lifelong intellectual disabilities and what active ageing might entail for an individual from this population who is currently under their care, in both the present and future. Data were analysed against the six core World Health Organization active ageing outcomes for people with intellectual disabilities. Results: Service providers appeared to be strongly focused on encouraging active ageing among their clients. However, their perceptions of the individual characteristics, circumstances and experiences of older adults with intellectual disabilities for whom they care suggest that active ageing principles need to be applied to this group in a way that considers both their individual and diverse needs, particularly with respect to them transitioning from day services, employment or voluntary work to reduced activity, and finally to aged care facilities. The appropriateness of this group being placed in nursing homes in old age was also questioned. Conclusion: Direct-care staff of older adults with intellectual disabilities have a vital role to play in encouraging and facilitating active ageing, as well as informing strategies that need to be implemented to ensure appropriate care for this diverse group as they proceed to old age.
Resumo:
With estimates that two billion of the world’s population will be 65 years or older by 2050, ensuring that older people ‘age well’ is an international priority. To date, however, there is significant disagreement and debate about how to define and measure ‘ageing well’, with no consensus on either terminology or measurement. Thus, this chapter describes the research rationale, methodology and findings of the Australian Active Ageing Study (Triple A Study), which surveyed 2620 older Australians to identify significant contributions to quality of life for older people: work, learning, social participation, spirituality, emotional wellbeing, health, and life events. Exploratory factor analyses identified eight distinct elements (grouped into four key concepts) which appear to define ‘active ageing’ and explained 55% of the variance: social and life participation (25%), emotional health (22%), physical health and functioning (4%) and security (4%). These findings highlight the importance of understanding and supporting the social and emotional dimensions of ageing, as issues of social relationships, life engagement and emotional health dominated the factor structure. Our intension is that this paper will prompt informed debate and discussion on defining and measuring active ageing, facilitating exploration and understanding of the complexity of issues that intertwine, converge and enhance the ageing experience.