86 resultados para Topological Strings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to perform only identical, invariant movement patterns during practice. METHOD: A 12-week training program (2 times per day; 6.5 hr per day) was implemented with 4 elite female springboard divers to encourage them to adapt movement patterns under variable takeoff conditions and complete intended dives, rather than balk. RESULTS: Intraindividual analyses revealed small increases in variability in the board-work component of each diver's pretraining and posttraining program reverse-dive takeoffs. No topological differences were observed between movement patterns of dives completed pretraining and posttraining. Differences were noted in the amount of movement variability under different training conditions (evidenced by higher normalized root mean square error indexes posttraining). An increase in the number of completed dives (from 78.91%-86.84% to 95.59%-99.29%) and a decrease in the frequency of balked takeoffs (from 13.16%-19.41% to 0.63%-4.41%) showed that the elite athletes were able to adapt their behaviors during the training program. These findings coincided with greater consistency in the divers' performance during practice as scored by qualified judges. CONCLUSION: Results suggested that on completion of training, athletes were capable of successfully adapting their movement patterns under more varied takeoff conditions to achieve greater consistency and stability of performance outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we introduce a path algebra well suited for navigation in environments that can be abstracted as topological graphs. From this path algebra, we derive algorithms to reduce routes in such environments. The routes are reduced in the sense that they are shorter (contain fewer edges), but still connect the endpoints of the initial routes. Contrary to planning methods descended from Disjktra’s Shortest Path Algorithm like D , the navigation methods derived from our path algebra do not require any graph representation. We prove that the reduced routes are optimal when the graphs are without cycles. In the case of graphs with cycles, we prove that whatever the length of the initial route, the length of the reduced route is bounded by a constant that only depends on the structure of the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies document signatures, which are small representations of documents and other objects that can be stored compactly and compared for similarity. This research finds that document signatures can be effectively and efficiently used to both search and understand relationships between documents in large collections, scalable enough to search a billion documents in a fraction of a second. Deliverables arising from the research include an investigation of the representational capacity of document signatures, the publication of an open-source signature search platform and an approach for scaling signature retrieval to operate efficiently on collections containing hundreds of millions of documents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world is rich with information such as signage and maps to assist humans to navigate. We present a method to extract topological spatial information from a generic bitmap floor plan and build a topometric graph that can be used by a mobile robot for tasks such as path planning and guided exploration. The algorithm first detects and extracts text in an image of the floor plan. Using the locations of the extracted text, flood fill is used to find the rooms and hallways. Doors are found by matching SURF features and these form the connections between rooms, which are the edges of the topological graph. Our system is able to automatically detect doors and differentiate between hallways and rooms, which is important for effective navigation. We show that our method can extract a topometric graph from a floor plan and is robust against ambiguous cases most commonly seen in floor plans including elevators and stairwells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

- BACKGROUND Chronic diseases are increasing worldwide and have become a significant burden to those affected by those diseases. Disease-specific education programs have demonstrated improved outcomes, although people do forget information quickly or memorize it incorrectly. The teach-back method was introduced in an attempt to reinforce education to patients. To date, the evidence regarding the effectiveness of health education employing the teach-back method in improved care has not yet been reviewed systematically. - OBJECTIVES This systematic review examined the evidence on using the teach-back method in health education programs for improving adherence and self-management of people with chronic disease. - INCLUSION CRITERIA Types of participants: Adults aged 18 years and over with one or more than one chronic disease. Types of intervention: All types of interventions which included the teach-back method in an education program for people with chronic diseases. The comparator was chronic disease education programs that did not involve the teach-back method. Types of studies: Randomized and non-randomized controlled trials, cohort studies, before-after studies and case-control studies. Types of outcomes: The outcomes of interest were adherence, self-management, disease-specific knowledge, readmission, knowledge retention, self-efficacy and quality of life. - SEARCH STRATEGY Searches were conducted in CINAHL, MEDLINE, EMBASE, Cochrane CENTRAL, Web of Science, ProQuest Nursing and Allied Health Source, and Google Scholar databases. Search terms were combined by AND or OR in search strings. Reference lists of included articles were also searched for further potential references. - METHODOLOGICAL QUALITY Two reviewers conducted quality appraisal of papers using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument. - DATA EXTRACTION Data were extracted using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument data extraction instruments. - DATA SYNTHESIS There was significant heterogeneity in selected studies, hence a meta-analysis was not possible and the results were presented in narrative form. - RESULTS Of the 21 articles retrieved in full, 12 on the use of the teach-back method met the inclusion criteria and were selected for analysis. Four studies confirmed improved disease-specific knowledge in intervention participants. One study showed a statistically significant improvement in adherence to medication and diet among type 2 diabetics patients in the intervention group compared to the control group (p < 0.001). Two studies found statistically significant improvements in self-efficacy (p = 0.0026 and p < 0.001) in the intervention groups. One study examined quality of life in heart failure patients but the results did not improve from the intervention (p = 0.59). Five studies found a reduction in readmission rates and hospitalization but these were not always statistically significant. Two studies showed improvement in daily weighing among heart failure participants, and in adherence to diet, exercise and foot care among those with type 2 diabetes. - CONCLUSION Overall, the teach-back method showed positive effects in a wide range of health care outcomes although these were not always statistically significant. Studies in this systematic review revealed improved outcomes in disease-specific knowledge, adherence, self-efficacy and the inhaler technique. There was a positive but inconsistent trend also seen in improved self-care and reduction of hospital readmission rates. There was limited evidence on improvement in quality of life or disease related knowledge retention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows that by using only symbolic language phrases, a mobile robot can purposefully navigate to specified rooms in previously unexplored environments. The robot intelligently organises a symbolic language description of the unseen environment and “imagines” a representative map, called the abstract map. The abstract map is an internal representation of the topological structure and spatial layout of symbolically defined locations. To perform goal-directed exploration, the abstract map creates a high-level semantic plan to reason about spaces beyond the robot’s known world. While completing the plan, the robot uses the metric guidance provided by a spatial layout, and grounded observations of door labels, to efficiently guide its navigation. The system is shown to complete exploration in unexplored spaces by travelling only 13.3% further than the optimal path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin-orbit coupling, producing a large nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSHphase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep convolutional neural networks (DCNNs) have been employed in many computer vision tasks with great success due to their robustness in feature learning. One of the advantages of DCNNs is their representation robustness to object locations, which is useful for object recognition tasks. However, this also discards spatial information, which is useful when dealing with topological information of the image (e.g. scene labeling, face recognition). In this paper, we propose a deeper and wider network architecture to tackle the scene labeling task. The depth is achieved by incorporating predictions from multiple early layers of the DCNN. The width is achieved by combining multiple outputs of the network. We then further refine the parsing task by adopting graphical models (GMs) as a post-processing step to incorporate spatial and contextual information into the network. The new strategy for a deeper, wider convolutional network coupled with graphical models has shown promising results on the PASCAL-Context dataset.