87 resultados para Tire Noise.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We contribute an empirically derived noise model for the Kinect sensor. We systematically measure both lateral and axial noise distributions, as a function of both distance and angle of the Kinect to an observed surface. The derived noise model can be used to filter Kinect depth maps for a variety of applications. Our second contribution applies our derived noise model to the KinectFusion system to extend filtering, volumetric fusion, and pose estimation within the pipeline. Qualitative results show our method allows reconstruction of finer details and the ability to reconstruct smaller objects and thinner surfaces. Quantitative results also show our method improves pose estimation accuracy. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corner detection has shown its great importance in many computer vision tasks. However, in real-world applications, noise in the image strongly affects the performance of corner detectors. Few corner detectors have been designed to be robust to heavy noise by now, partly because the noise could be reduced by a denoising procedure. In this paper, we present a corner detector that could find discriminative corners in images contaminated by noise of different levels, without any denoising procedure. Candidate corners (i.e., features) are firstly detected by a modified SUSAN approach, and then false corners in noise are rejected based on their local characteristics. Features in flat regions are removed based on their intensity centroid, and features on edge structures are removed using the Harris response. The detector is self-adaptive to noise since the image signal-to-noise ratio (SNR) is automatically estimated to choose an appropriate threshold for refining features. Experimental results show that our detector has better performance at locating discriminative corners in images with strong noise than other widely used corner or keypoint detectors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic modelling is critical in GNSS data processing. Currently, GNSS data processing commonly relies on the empirical stochastic model which may not reflect the actual data quality or noise characteristics. This paper examines the real-time GNSS observation noise estimation methods enabling to determine the observation variance from single receiver data stream. The methods involve three steps: forming linear combination, handling the ionosphere and ambiguity bias and variance estimation. Two distinguished ways are applied to overcome the ionosphere and ambiguity biases, known as the time differenced method and polynomial prediction method respectively. The real time variance estimation methods are compared with the zero-baseline and short-baseline methods. The proposed method only requires single receiver observation, thus applicable to both differenced and un-differenced data processing modes. However, the methods may be subject to the normal ionosphere conditions and low autocorrelation GNSS receivers. Experimental results also indicate the proposed method can result on more realistic parameter precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ugly Australian Underground documents the music, songwriting, aesthetics and struggles of fifty of Australia’s most innovative and significant bands and artists currently at the creative peak of their careers. The book provides a rare insight into the critically heralded cult music scene in Australia. The author, Jimi Kritzler, is both a journalist and a musician, and is personally connected to the musicians he interviews through his involvement in this music subculture. The interviews are extremely personal and reveal much more than any interview granted to street press or blogs. They deal with not only the music and songwriting processes of each band, but in some circumstances their struggles with drugs, involvement in crime and the death of band members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The QUT-NOISE-SRE protocol is designed to mix the large QUT-NOISE database, consisting of over 10 hours of back- ground noise, collected across 10 unique locations covering 5 common noise scenarios, with commonly used speaker recognition datasets such as Switchboard, Mixer and the speaker recognition evaluation (SRE) datasets provided by NIST. By allowing common, clean, speech corpora to be mixed with a wide variety of noise conditions, environmental reverberant responses, and signal-to-noise ratios, this protocol provides a solid basis for the development, evaluation and benchmarking of robust speaker recognition algorithms, and is freely available to download alongside the QUT-NOISE database. In this work, we use the QUT-NOISE-SRE protocol to evaluate a state-of-the-art PLDA i-vector speaker recognition system, demonstrating the importance of designing voice-activity-detection front-ends specifically for speaker recognition, rather than aiming for perfect coherence with the true speech/non-speech boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2008] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2008] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the unhinged loss’ SLN-robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sized trucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.