329 resultados para Temperature sensors
Resumo:
This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.
Resumo:
Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 °C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 °C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality.
Resumo:
Objective To quantify the lagged effects of mean temperature on deaths from cardiovascular diseases in Brisbane, Australia. Design Polynomial distributed lag models were used to assess the percentage increase in mortality up to 30 days associated with an increase (or decrease) of 1°C above (or below) the threshold temperature. Setting Brisbane, Australia. Patients 22 805 cardiovascular deaths registered between 1996 and 2004. Main outcome measures Deaths from cardiovascular diseases. Results The results show a longer lagged effect in cold days and a shorter lagged effect in hot days. For the hot effect, a statistically significant association was observed only for lag 0–1 days. The percentage increase in mortality was found to be 3.7% (95% CI 0.4% to 7.1%) for people aged ≥65 years and 3.5% (95% CI 0.4% to 6.7%) for all ages associated with an increase of 1°C above the threshold temperature of 24°C. For the cold effect, a significant effect of temperature was found for 10–15 lag days. The percentage estimates for older people and all ages were 3.1% (95% CI 0.7% to 5.7%) and 2.8% (95% CI 0.5% to 5.1%), respectively, with a decrease of 1°C below the threshold temperature of 24°C. Conclusions The lagged effects lasted longer for cold temperatures but were apparently shorter for hot temperatures. There was no substantial difference in the lag effect of temperature on mortality between all ages and those aged ≥65 years in Brisbane, Australia.
Resumo:
The seawater neutralisation process is currently used in the Alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues, through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralisation method is very similar to the co-precipitation method used to synthesise hydrotalcite (Mg6Al2(OH)16CO3•4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralisation process of Bayer liquor. The Bayer precipitates have been characterised by a variety of techniques, including X-ray diffraction, Raman spectroscopy and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. XRD determined that Bayer hydrotalcites that are synthesised at 55 °C have a larger interlayer distance, indicating more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 °C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.
Resumo:
Almost 10% of all births are preterm and 2.2% are stillbirths globally. Recent research has suggested that environmental factors may be a contributory cause to these adverse birth outcomes. The authors examined the relationship between ambient temperature and preterm birth and stillbirth in Brisbane, Australia between 2005 and 2009 (n = 101,870). They used a Cox proportional hazard model with live birth and stillbirth as competing risks. They also examined if there were periods of the pregnancy where exposure to high temperatures had a greater effect. Exposure to higher ambient temperatures during pregnancy increased the risk of stillbirth. The hazard ratio for stillbirth was 0.3 at 12 °C relative to the reference temperature at 21 °C. The temperature effect was greatest for fetuses of less than 36 weeks of gestation. There was an association between higher temperature and shorter gestation, as the hazard ratio for live birth was 0.96 at 15 °C and 1.02 at 25 °C. This effect was greatest at later gestational ages. The results provide strong evidence of an association between increased temperature and increased risk of stillbirth and shorter gestations.
Resumo:
In many bridges, vertical displacements are the most relevant parameter for monitoring in the both short and long term. However, it is difficult to measure vertical displacements of bridges and yet they are among the most important indicators of structural behaviour. Therefore, it prompts a need to develop a simple, inexpensive and yet more practical method to measure vertical displacements of bridges. With the development of fiber-optics technologies, fiber Bragg grating (FBG) sensors have been widely used in structural health monitoring. The advantages of these sensors over the conventional sensors include multiplexing capabilities, high sample rate, small size and electro magnetic interference (EMI) immunity. In this paper, methods of vertical displacement measurements of bridges are first reviewed. Then, FBG technology is briefly introduced including principle, sensing system, characteristics and different types of FBG sensors. Finally, the methodology of vertical displacement measurements using FBG sensors is presented and a trial test is described. It is concluded that using FBG sensors is feasible to measure vertical displacements of bridges. This method can be used to understand global behaviour of bridge‘s span and can further develop for structural health monitoring techniques such as damage detection.
Resumo:
A series of new spin-labeled porphyrin containing isoindoline nitroxide moieties were synthesized and characterized as potential free radical fluorescence sensors. Fluorescence-suppression was observed in the free-base monoradical porphyrins, whilst the free-base biradical porphyrins exhibited highly suppressed fluorescence about three times greater than the monoradical porphyrins. The observed fluorescence-suppression was attributed to enhanced intersystem crossing resulting from electronexchange between the doublet nitroxide and the excited porphyrin fluorophore. Notably, fluorescencesuppression was not as strong in the related metalated porphyrins, possibly due to insufficient spin coupling between the nitroxide and the porphyrin. Continuous wave EPR spectroscopy of the diradical porphyrins in fluid solution suggests that the nitroxyl-nitroxyl interspin distance is long enough and tumbling is fast enough not to detect dipolar coupling.
Resumo:
Hayabusa, an unmanned Japanese spacecraft, was launched to study and collect samples from the surface of the asteroid 25143 Itokawa. In June 2010, the Hayabusa spacecraft completed it’s seven year voyage. The spacecraft and the sample return capsule (SRC) re-entered the Earth’s atmosphere over the central Australian desert at speeds on the order of 12 km/s. This provided a rare opportunity to experimentally investigate the radiative heat transfer from the shock-compressed gases in front of the sample return capsule at true-flight conditions. This paper reports on the results of observations from a tracking camera situated on the ground about 100 km from where the capsule experienced peak heating during re-entry.
Resumo:
The aim of the research program was to evaluate the heat strain, hydration status, and heat illness symptoms experienced by surface mine workers. An initial investigation involved 91 surface miners completing a heat stress questionnaire; assessing the work environment, hydration practices, and heat illness symptom experience. The key findings included 1) more than 80 % of workers experienced at least one symptom of heat illness over a 12 month period; and 2) the risk of moderate symptoms of heat illness increased with the severity of dehydration. These findings highlight a health and safety concern for surface miners, as experiencing symptoms of heat illness is an indication that the physiological systems of the body may be struggling to meet the demands of thermoregulation. To illuminate these findings a field investigation to monitor the heat strain and hydration status of surface miners was proposed. Two preliminary studies were conducted to ensure accurate and reliable data collection techniques. Firstly, a study was undertaken to determine a calibration procedure to ensure the accuracy of core body temperature measurement via an ingestible sensor. A water bath was heated to several temperatures between 23 . 51 ¢ªC, allowing for comparison of the temperature recorded by the sensors and a traceable thermometer. A positive systematic bias was observed and indicated a need for calibration. It was concluded that a linear regression should be developed for each sensor prior to ingestion, allowing for a correction to be applied to the raw data. Secondly, hydration status was to be assessed through urine specific gravity measurement. It was foreseeable that practical limitations on mine sites would delay the time between urine collection and analysis. A study was undertaken to assess the reliability of urine analysis over time. Measurement of urine specific gravity was found to be reliable up to 24 hours post urine collection and was suitable to be used in the field study. Twenty-nine surface miners (14 drillers [winter] and 15 blast crew [summer]) were monitored during a normal work shift. Core body temperature was recorded continuously. Average mean core body temperature was 37.5 and 37.4 ¢ªC for blast crew and drillers, with average maximum body temperatures of 38.0 and 37.9 ¢ªC respectively. The highest body temperature recorded was 38.4 ¢ªC. Urine samples were collected at each void for specific gravity measurement. The average mean urine specific gravity was 1.024 and 1.021 for blast crew and drillers respectively. The Heat Illness Symptoms Index was used to evaluate the experience of heat illness symptoms on shift. Over 70 % of drillers and over 80 % of blast crew reported at least one symptom. It was concluded that 1) heat strain remained within the recommended limits for acclimatised workers; and 2) the majority of workers were dehydrated before commencing their shift, and tend to remain dehydrated for the duration. Dehydration was identified as the primary issue for surface miners working in the heat. Therefore continued study focused on investigating a novel approach to monitoring hydration status. The final aim of this research program was to investigate the influence dehydration has on intraocular pressure (IOP); and subsequently, whether IOP could provide a novel indicator of hydration status. Seven males completed 90 minutes of walking in both a cool and hot climate with fluid restriction. Hydration variables and intraocular pressure were measured at baseline and at 30 minute intervals. Participants became dehydrated during the trial in the heat but maintained hydration status in the cool. Intraocular pressure progressively declined in the trial in the heat but remained relatively stable when hydration was maintained. A significant relationship was observed between intraocular pressure and both body mass loss and plasma osmolality. This evidence suggests that intraocular pressure is influenced by changes in hydration status. Further research is required to determine if intraocular pressure could be utilised as an indirect indicator of hydration status.
Resumo:
Recent theoretical research has shown that ocean currents and wind interact to disperse seeds over long distances among isolated landmasses. Dispersal of seeds among isolated oceanic islands, by birds, oceans and man, is a well-known phenomenon, and many widespread island plants have traits that facilitate this process. Crucially, however, there have been no mechanistic vector-based models of long-distance dispersal for seeds among isolated oceanic islands based on empirical data. Here, we propose a plan to develop seed analogues, or pseudoseeds, fitted with wireless sensor technology that will enable high-fidelity tracking as they disperse across the ocean. The pseudoseeds will be precisely designed to mimic actual seed buoyancy and morphology enabling realistic and accurate, vector-based dispersal models of ocean seed dispersal over vast geographic scales.
Resumo:
The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.
Resumo:
Background There has been increasing interest in assessing the impacts of temperature on mortality. However, few studies have used a case–crossover design to examine non-linear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature-mortality relationship in China, or what temperature measure is the best predictor of mortality. Objectives To use a distributed lag non-linear model (DLNM) as a part of case–crossover design. To examine the non-linear and distributed lag effects of temperature on mortality in Tianjin, China. To explore which temperature measure is the best predictor of mortality; Methods: The DLNM was applied to a case¬−crossover design to assess the non-linear and delayed effects of temperatures (maximum, mean and minimum) on deaths (non-accidental, cardiopulmonary, cardiovascular and respiratory). Results A U-shaped relationship was consistently found between temperature and mortality. Cold effects (significantly increased mortality associated with low temperatures) were delayed by 3 days, and persisted for 10 days. Hot effects (significantly increased mortality associated with high temperatures) were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions In Tianjin, extreme cold and hot temperatures increased the risk of mortality. Results suggest that the effects of cold last longer than the effects of heat. It is possible to combine the case−crossover design with DLNMs. This allows the case−crossover design to flexibly estimate the non-linear and delayed effects of temperature (or air pollution) whilst controlling for season.
Resumo:
Pt/nanostructured molybdenum oxide (MoO3) /SiC Schottky diode based gas sensors were fabricated for hydrogen (H2) gas sensing. Due to the enhanced performance, which is ascribed to the application of MoO3 nanostructures, these devices were used in reversed bias. MoO3 characterization by scanning electron microscopy showed morphology of randomly orientated nanoplatelets with thicknesses between 50 and 500 nm. An α-Β mixed phase crystallographic structure of MoO3 was characterized by x-ray diffraction. At 180 °C, 1.343 V voltage shift in the reverse I-V curve and a Pt/ MoO3 barrier height change of 20 meV were obtained after exposure to 1% H2 gas in synthetic air. © 2009 American Institute of Physics.