281 resultados para Tecnologia mineral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectrum of tyrolite, CaCu5(AsO4)2(CO3)(OH) 4.6H2O, from Brixlegg, Tyrol, Austria, is reported. Comparison with copper hydroxy-arsenate and basic carbonates was used to achieve assignments of the observed bands. The AsO43- group is characterized by two υ4 modes around 433 and 480 cm-1 plus a broad band around 840 cm-1 as the υ overlapping with the υ. The υ3 mode is observed as a single band around 355 cm -1. The CO32- υ1 mode is observed around 1035 and 1088 cm-1, although this assignment is difficult because of the in-plane OH bending vibrations at similar frequencies. Two υ4 modes are assigned to the 717 and 755 cm-1 bands. The υ3 mode is present as three bands at 1431, 1463, and 1498 cm-1. A large split caused by bridging carbonates may explain the band at 1370 cm -1. The H2O bending region shows two bands at 1635 and 1667 cm-1 together with stretching modes around 3204 and 3303 cm-1, the first associated with adsorbed H2O, while the second indicates more strongly bonded H2O. Three bands around 3534, 3438, and 3379 cm -1 are assigned to OH stretching modes of the OH groups in the crystal structure. The 202, 262, 301, 524, and 534 cm-1 bands are assigned to Cu-OH bending and stretching modes, whereas the bands around 179, 202, and 217 cm-1 are ascribed to O-(Ca, Cu)-O(H) with the O(H) at much greater distance from the cation. The bands around 503, 570, and 598 cm-1 are ascribed to the Cu-O stretching modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral woodhouseite CaAl3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites, and has been characterised by Raman spectroscopy, complimented with infrared spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of woodhouseite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research is to determine the molecular structure of the mineral hinsdalite using vibrational spectroscopy. The mineral hinsdalite (Pb,Sr)Al3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites. The mineral is interesting because it contains two oxyanions, phosphate and sulphate, which is unusual. The formation of hinsdalite offers a mechanism for the removal of phosphate from the environment. The mineral has been characterised by Raman spectroscopy and infrared spectroscopy. The spectra are then related to the molecular structure of the mineral. Bands at various wavenumbers are assigned to the different vibrational modes of hinsdalite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. The Raman spectrum is characterised by an intense sharp band at 982 cm-1 with a component band at 997 cm-1 assigned to the ν1 (PO4)3- symmetric stretching modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Hinsdalite is characterised by disordered phosphate/sulphate tetrahedra and non-equivalent phosphate units are observed in the vibrational spectrum of hinsdalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman microprobe spectra of the clay mineral Wyoming SWy-2-sodium montmorillonite intercalated with the surfactants, methyltrioctadecylammonium bromide (TOMA) dimethyldiotadecylammonium bromide (DODMA) and octadecyl-trimethylammonium bromide (ODTMA), have been measured in the CH2 stretching region at external pressures up to ~40 kbar with the aid of a diamond-anvil cell. In the case of the intercalated clays containing TOMA and DODMA, the Raman data afford evidence for gauche to trans conformational changes in the orientation of the CH2 chains in the surfactants with increasing pressure. These conformational changes are reversed completely upon the release of pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ.