235 resultados para TIN OXIDE ELECTRODE
Resumo:
Background Nitric oxide is released by immune, epithelial and endothelial cells, and plays an important part in the pathophysiology of asthma. Objective To investigate the association of inducible nitric oxide synthases (iNOS) gene repeat polymorphisms with asthma. Methods 230 families with asthma (842 individuals) were recruited to identify and establish the genetic association of iNOS repeats with asthma and associated phenotypes. Serum nitric oxide levels in selected individuals were measured and correlated with specific genotypes. Multiple logistic regression analysis was performed to determine the effect of age and sex. Results A total of four repeats—a (CCTTT)n promoter repeat, a novel intron 2 (GT)n repeat (BV680047), an intron 4 (GT)n repeat (AFM311ZB1) and an intron 5 (CA)n repeat (D17S1878)—were identified and genotyped. A significant transmission distortion to the probands with asthma was seen for allele 3 of the AFM311ZB1 gene (p = 0.006). This allele was also found to be significantly associated with percentage blood eosinophils (p<0.001) and asthma severity (p = 0.04). Moreover, it was functionally correlated with high serum nitric oxide levels (p = 0.006). Similarly, the promoter repeat was found to be associated with serum total immunoglobulin (Ig)E (p = 0.028). Individuals carrying allele 4 of this repeat have high serum IgE (p<0.001) and nitric oxide levels (p = 0.03). Conclusion This is the first study to identify the repeat polymorphisms in the iNOS gene that are associated with severity of asthma and eosinophils. The functional relevance of the associated alleles with serum nitric oxide levels was also shown. Therefore, these results could be valuable in elucidating the role of nitric oxide in asthma pathogenesis.
Resumo:
In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.
Resumo:
We synthesized vertically aligned nail-shaped ZnO nanocrystal arrays on silicon substrates via a combination of a carbothermal reduction method and textured ZnO seeding layers that were precoated on silicon substrates by thermally decomposing zinc acetate, and studied their optical properties using cathodoluminescence (CL) and photoluminescence techniques. The ZnO nanonails show a sharp band-gap edge UV emission and a defect-related broad green emission. Monochromatic CL images of an individual ZnO nanonail show variations in spatial distributions of respective CL bands that had different origins. We attribute the spatial variation of CL images to an uneven distribution of luminescent defects and/or a structure-related light out-coupling from hexagonal ZnO nanostructures. The most distinct CL feature from the hexagonal head of an individual ZnO nanonail was the occurrence of a series of distinct resonant peaks within the visible wavelength range. It appeared that the head of a nanonail played the role of a hexagonal cavity so that polarizationdependent whispering gallery modes were stimulated by electron beam excitation.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Sensing properties of e-beam evaporated nanostructured pure and iron-doped tungsten oxide thin films
Resumo:
Gas sensing properties of nanostructured pure and iron-doped WO3 thin films are discussed. Electron beam evaporation technique has been used to obtain nanostructured thin films of WO3 and WO3:Fe with small grain size and porosity. Atomic force microscopy has been employed to study the microstructure. High sensitivity of both films towards NO2 is observed. Doping of the tungsten oxide film with Fe decreased the material resistance by a factor of about 30 when exposed to 5 ppm NO2. The high sensitivity is attributed to an improved microstructure of the films obtained through e-beam evaporation technique, and subsequent annealing at 300oC for 1 hour.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.
Resumo:
It is accepted that the efficiency of sugar cane clarification is closely linked with sugar juice composition (including suspended or insoluble impurities), the inorganic phosphate content, the liming condition and type, and the interactions between the juice components. These interactions are not well understood, particularly those between calcium, phosphate, and sucrose in sugar cane juice. Studies have been conducted on calcium oxide (CaO)/phosphate/sucrose systems in both synthetic and factory juices to provide further information on the defecation process (i.e., simple liming to effect impurity removal) and to identify an effective clarification process that would result in reduced scaling of sugar factory evaporators, pans, and centrifugals. Results have shown that a two-stage process involving the addition of lime saccharate to a set juice pH followed by the addition of sodium hydroxide to a final juice pH or a similar two-stage process where the order of addition of the alkalis is reversed prior to clarification reduces the impurity loading of the clarified juice compared to that of the clarified juice obtained by the conventional defecation process. The treatment process showed reductions in CaO (27% to 50%) and MgO (up to 20%) in clarified juices with no apparent loss in juice clarity or increase in residence time of the mud particles compared to those in the conventional process. There was also a reduction in the SiO2 content. However, the disadvantage of this process is the significant increase in the Na2O content.
Resumo:
The possibility of a surface inner sphere electron transfer mechanism leading to the coating of gold via the surface reduction of gold(I) chloride on metal and semi-metal oxide nanoparticles was investigated. Silica and zinc oxide nanoparticles are known to have very different surface chemistry, potentially leading to a new class of gold coated nanoparticles. Monodisperse silica nanoparticles were synthesised by the well known Stöber protocol in conjunction with sonication. The nanoparticle size was regulated solely by varying the amount of ammonia solution added. The presence of surface hydroxyl groups was investigated by liquid proton NMR. The resultant nanoparticle size was directly measured by the use of TEM. The synthesised silica nanoparticles were dispersed in acetonitrile (MeCN) and added to a bis acetonitrile gold(I) co-ordination complex [Au(MeCN)2]+ in MeCN. The silica hydroxyl groups were deprotonated in the presence of MeCN generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles, which formed a surface co-ordination complex with reduction to gold(0), that proceeded by a surface inner sphere electron transfer mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into gold(0) and gold(III) respectively, with gold(0) being added to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of gold(III) to gold(0) by ascorbic acid. This process generated a thin and uniform gold coating on the silica nanoparticles. This process was modified to include uniformly gold coated composite zinc oxide nanoparticles (Au@ZnO NPs) using surface co-ordination chemistry. AuCl dissolved in acetonitrile (MeCN) supplied chloride ions which were adsorbed onto ZnO NPs. The co-ordinated gold(I) was reduced on the ZnO surface to gold(0) by the inner sphere electron transfer mechanism. Addition of water disproportionated the remaining gold(I) to gold(0) and gold(III). Gold(0) bonded to gold(0) on the NP surface with gold(III) was reduced to gold(0) by ascorbic acid (ASC), which completed the gold coating process. This gold coating process of Au@ZnO NPs was modified to incorporate iodide instead of chloride. ZnO NPs were synthesised by the use of sodium oxide, zinc iodide and potassium iodide in refluxing basic ethanol with iodide controlling the presence of chemisorbed oxygen. These ZnO NPs were treated by the addition of gold(I) chloride dissolved in acetonitrile leaving chloride anions co-ordinated on the ZnO NP surface. This allowed acetonitrile ligands in the added [Au(MeCN)2]+ complex to surface exchange with adsorbed chloride from the dissolved AuCl on the ZnO NP surface. Gold(I) was then reduced by the surface inner sphere electron transfer mechanism. The presence of the reduced gold on the ZnO NPs allowed adsorption of iodide to generate a uniform deposition of gold onto the ZnO NP surface without the use of additional reducing agents or heat.