88 resultados para Solar Dryers and Latent Heat Thermal Energy Storage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taking into consideration of growing energy needs and concern for environmental degradation, clean and inexhaustible energy source, such as solar energy, is receiving greater attention for various applications. The use of solar energy system reduces pollution, waste and has little or no harmful effects on the environment. It is appreciated that this source of energy can be complementary rather than being competitive to conventional energy sources. In order to collect and harness energy from the sun, a solar collector is essential. A solar collector is basically a heat exchanger that transforms solar radiant energy into heat or thermal energy. Improvement of performance is essential for commercial acceptance of their use in such applications. Many studies have been undertaken on the enhancement of thermal performance of solar collectors, using diverse materials of various shapes, dimensions and layouts. In the literature, various collector designs have been proposed and tested with the objective of meeting these requirements [1-8]. Omer et al. [1] found the efficiency of a solar collector of about 70% in a solar assisted heat pump system. Traditional solar collectors are single phase collectors, in which the working fluid is either air or water. Different modifications are suggested and applied to improve the heat transfer between the absorber and working fluid in a collector. These modifications include the use of absorber with fins attached [2,3], corrugated absorber [4,5], matrix type absorber [6], V-groove solar air collector [7]. Karim et al. [8] approached a review of design and construction of three types (flat, vee-grooved, and finned) of air collectors. Two-phase collectors, on the other hand, have significant potential for continuous operation round the clock, when used in conjunction with a compressor, as found in a solar assisted heat-pump cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Carbon, one of the most abundant materials found on earth, and its allotrope forms have been proposed in this project for novel energy generation and storage devices. This studied investigated the synthesis and properties of these carbon nanomaterials for applications in organic solar cells and supercapacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to some embodiments, the present invention provides a novel photovoltaic solar cell system from photovoltaic modules that are vertically arrayed in a stack format using thin film semiconductors selected from among org. and inorg. thin film semiconductors. The stack cells may be cells that are produced in a planar manner, then vertically oriented in an angular form, also termed herein tilted, to maximize the light capturing aspects. The use of a stack configuration system as described herein allows for the use of a variety of electrode materials, such as transparent materials or semitransparent metals. Light concn. can be achieved by using fresnel lens, parabolic mirrors or derivs. of such structures. The light capturing can be controlled by being reflected back and forth in the photovoltaic system until significant quantities of the resonant light is absorbed. Light that passes to the end and can be reflected back through the device by beveling or capping the end of the device with a different refractive index material, or alternatively using a reflective surface. The contacting between stacked cells can be done in series or parallel. According to some embodiments, the present invention uses a concentrator architecture where the light is channeled into the cells that contain thermal fluid channels (using a transparent fluid such as water) to absorb and hence reduce the thermal energy generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spaces without northerly orientations have an impact on the ‘energy behaviour’ of a building. This paper outlines possible energy savings and better performance achieved by different zenithal solar passive strategies (skylights, roof monitors and clerestory roof windows) and element arrangements across the roof in zones of cold to temperate climates typical of the central and central-southern Argentina. Analyses were undertaken considering daylighting, thermal and ventilation performances of the different strategies. The results indicate that heating,ventilation and lighting loads in spaces without an equator-facing facade can be significantly reduced by implementing solar passive strategies. In the thermal aspect, the solar saving fraction reached for the different strategies were averaged 43.16% for clerestories, 41.4% for roof monitors and 38.86% for skylights for a glass area of 9% to the floor area. The results also indicate average illuminance levels above 500 lux for the different clerestory and monitor arrangements, uniformity ratios of 0.66–0.82 for the most distributed arrangements and day-lighting factors between 11.78 and 20.30% for clear sky conditions, depending on the strategy. In addition, minimum air changes rates of 4 were reached for the most extreme conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green energy is one of the key factors, driving down electricity bill and zero carbon emission generating electricity to green building. However, the climate change and environmental policies are accelerating people to use renewable energy instead of coal-fired (convention type) energy for green building that energy is not environmental friendly. Therefore, solar energy is one of the clean energy solving environmental impact and paying less in electricity fee. The method of solar energy is collecting sun from solar array and saves in battery from which provides necessary electricity to whole house with zero carbon emission. However, in the market a lot of solar arrays suppliers, the aims of this paper attempted to use superiority and inferiority multi-criteria ranking (SIR) method with 13 constraints establishing I-flows and S-flows matrices to evaluate four alternatives solar energies and determining which alternative is the best, providing power to sustainable building. Furthermore, SIR is well-known structured approach of multi-criteria decision support tools and gradually used in construction and building. The outcome of this paper significantly gives an indication to user selecting solar energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.1 Background What is renewable energy education and training? A cursory exploration of the International Solar Energy Society website (www.ises.org) reveals numerous references to education and training, referring collectively to concepts of the transfer and exchange of information and good practices, awareness raising and skills development. The purposes of such education and training relate to changing policy, stimulating industry, improving quality control and promoting the wider use of renewable energy sources. The primary objective appears to be to accelerate a transition to a better world for everyone (ISEE), as the greater use of renewable energy is seen as key to climate recovery; world poverty alleviation; advances in energy security, access and equality; improved human and environmental health; and a stabilized society. The Solar Cities project – Habitats of Tomorrow – aims at promoting the greater use of renewable energy within the context of long term planning for sustainable urban development. The focus is on cities or communities as complete systems; each one a unique laboratory allowing for the study of urban sustainability within the context of a low carbon lifestyle. The purpose of this paper is to report on an evaluation of a Solar Community in Australia, focusing specifically on the implications (i) for our understandings and practices in renewable energy education and training and (ii) for sustainability outcomes. 1.2 Methodology The physical context is a residential Ecovillage (a Solar Community) in sub-tropical Queensland, Australia (latitude 28o south). An extensive Architectural and Landscape Code (A&LC) ‘premised on the interconnectedness of all things’ and embracing ‘both local and global concerns’ governs the design and construction of housing in the estate: all houses are constructed off-ground (i.e. on stumps or stilts) and incorporate a hybrid approach to the building envelope (mixed use of thermal mass and light-weight materials). Passive solar design, gas boosted solar water heaters and a minimum 1kWp photovoltaic system (grid connected) are all mandatory, whilst high energy use appliances such as air conditioners and clothes driers are not permitted. Eight families participated in an extended case study that encompassed both quantitative and qualitative approaches to better understand sustainable housing (perceived as a single complex technology) through its phases of design, construction and occupation. 1.3 Results The results revealed that the level of sustainability (i.e. the performance outcomes in terms of a low-carbon lifestyle) was impacted on by numerous ‘players’ in the supply chain, such as architects, engineers and subcontractors, the housing market, the developer, product manufacturers / suppliers / installers and regulators. Three key factors were complicit in the level of success: (i) systems thinking; (ii) informed decision making; and (iii) environmental ethics and business practices. 1.4 Discussion The experiences of these families bring into question our understandings and practices with regard to education and training. Whilst increasing and transferring knowledge and skills is essential, the results appear to indicate that there is a strong need for expanding our education efforts to incorporate foundational skills in complex systems and decision making processes, combined with an understanding of how our individual and collective values and beliefs impact on these systems and processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the growing energy needs and concern for environmental degradation, clean and inexhaustible energy sources, e.g solar energy are receiving greater attention for various applications. The use of solar energy systems for low temperature applications reduces the burden on conventional fossil fuels and has little or no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporatorcollector (SEC) is basically an unglazed flat plate collector where refrigerant, like R134a, is used as the working fluid. As the operating temperature of SEC is very low, it collects energy both from solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. The capability of SEC to utilize ambient energy also enables the system to operate at night. Therefore it is not appropriate to use for the evaluation of performance of SEC by conventional efficiency equation where ambient energy and condensation is not considered as energy input in addition to irradiation. In the National University of Singapore, several Solar Assisted Heat Pump (SAHP) systems were built for the evaluation of performance under the metrological condition of Singapore for thermal applications of desalination and SEC was the main component to harness renewable energy. In this paper, the design and performance of SEC are explored. Furthermore, an attempt is made to develop an efficiency equation for SEC and maximum efficiency attained 98% under the meteorological condition of Singapore.