81 resultados para Sodium Chloride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two hydrated salts of 4-aminophenylarsonic acid (p-arsanilic acid), namely ammonium 4-aminophenylarsonate monohydrate, NH4(+)·C6H7AsNO3(-)·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter-species N-H...O and arsonate and water O-H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding interactions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na(+) cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O-H...O and N-H...O hydrogen-bonding interactions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile and up-scalable wet-mechanochemical process is designed for fabricating ultra-fine SnO2 nanoparticles anchored on graphene networks for use as anode materials for sodium ion batteries. A hierarchical structure of the SnO2@graphene composite is obtained from the process. The resultant rechargeable SIBs achieved high rate capability and good cycling stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring high-performance anode materials is currently one of the most urgent issues towards practical sodium-ion batteries (SIBs). In this work, Bi2S3 is demonstrated to be a high-capacity anode for SIBs for the first time. The specific capacity of Bi2S3 nanorods achieves up to 658 and 264 mAh g-1 at a current density of 100 and 2000 mA g-1, respectively. A full cell with Na3V2(PO4)3-based cathode is also assembled as a proof of concept and delivers 340 mAh g-1 at 100 mA g-1. The sodium storage mechanism of Bi2S3 is investigated by ex-situ XRD coupled with high-resolution TEM (HRTEM), and it is found that sodium storage is achieved by a combined conversion-intercalation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium-ion batteries (SIBs) are considered as complementary alternatives to lithium-ion batteries for grid energy storage due to the abundance of sodium. However, low capacity, poor rate capability, and cycling stability of existing anodes significantly hinder the practical applications of SIBs. Herein, ultrathin two-dimensional SnS2 nanosheets (3-4 nm in thickness) are synthesized via a facile refluxing process toward enhanced sodium storage. The SnS2 nanosheets exhibit a high apparent diffusion coefficient of Na+ and fast sodiation/desodiation reaction kinetics. In half-cells, the nanosheets deliver a high reversible capacity of 733 mAh g-1 at 0.1 A g-1, which still remains up to 435 mAh g-1 at 2 A g-1. The cell has a high capacity retention of 647 mA h g-1 during the 50th cycle at 0.1 A g-1, which is by far the best for SnS2, suggesting that nanosheet morphology is beneficial to improve cycling stability in addition to rate capability. The SnS2 nanosheets also show encouraging performance in a full cell with a Na3V2(PO4)3 cathode. In addition, the sodium storage mechanism is investigated by ex situ XRD coupled with high-resolution TEM. The high specific capacity, good rate capability, and cycling durability suggest that SnS2 nanosheets have great potential working as anodes for high-performance SIBs. © 2015 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse osmosis is the dominant technology utilized for desalination of saline water produced during the extraction of coal seam gas. Alternatively, ion exchange is of interest due to potential cost advantages. However, there is limited information regarding the column performance of strong acid cation resin for removal of sodium ions from both model and actual coal seam water samples. In particular, the impact of bed depth, flow rate, and regeneration was not clear. Consequently, this study applied Bed Depth Service Time (BDST) models to reveal that increasing sodium ion concentration and flow rates diminished the time required for breakthrough to occur. The loading of sodium ions on fresh resin was calculated to be ca. 71.1 g Na/kg resin. Difficulties in regeneration of the resin using hydrochloric acid solutions were discovered, with 86% recovery of exchange sites observed. The maximum concentration of sodium ions in the regenerant brine was found to be 47,400 mg/L under the conditions employed. The volume of regenerant waste formed was 6.2% of the total volume of water treated. A coal seam water sample was found to load the resin with only 53.5 g Na/kg resin, which was consistent with not only the co-presence of more favoured ions such as calcium, magnesium, barium and strontium, but also inefficient regeneration of the resin prior to the coal seam water test.