190 resultados para Slope efficiencies
Resumo:
Efficient state asset management is crucial for governments as they facilitate the fulfillment of their public functions, which include the provision of essential services and other public administration support. In recent times economies internationally and particularly in South east Asia, have displayed increased recognition of the importance of efficiencies across state asset management law, policies and practice. This has been exemplified by a surge in notable instances of reform in state asset management. A prominent theme in this phenomenon is the consideration of governance principles within the re-conceptualization of state asset management law and related policy, with many countries recognizing variability in the quality of asset governance and opportunities for profit as being critical factors. This issue is very current in Indonesia where a major reform process in this area has been confirmed by the establishment of a new Directorate of State Asset Management. The incumbent Director-General of State Asset Management has confirmed a re-emphasis on adherence to governance principles within applicable state asset management law and policy reform. This paper reviews aspects of the challenge of reviewing and reforming Indonesian practice within state asset management law and policy specifically related to public housing, public buildings, parklands, and vacant land. A critical issue in beginning this review is how Indonesia currently conceptualizes the notion of asset governance and how this meaning is embodied in recent changes in law and policy and importantly in options for future change. This paper discusses the potential complexities uniquely Indonesian characteristics such as decentralisation and regional autonomy regime, political history, and bureaucratic culture.
Resumo:
Rainfall can disrupt the balance of natural soil slope. This imbalance will be accelerated by existence of cracks in soil slope, which lead to decreasing shear strength and increasing hydraulic conductivity of the soil slope. Some research works have been conducted on the effects of surface-cracks on slope stability. However, the influence of deep-cracks is yet to be investigated. Limited availability of deep crack data due to the lack of effective sub-soil investigation methods could be one of the obstacles. To emphasize the effects of deep cracks in soil slope on its rain-induced instability, a natural soil slope in Indonesia that failed in 31st October 2010 due to heavy rainfall was analyzed for stability with and without deep cracks in the slope. The slope stability analysis was conducted using SLOPE/W coupling with the results of transient seepage analysis (SEEP/W) that simulate the pore-water pressure development in the slope during the rainfall. The results of Electrical Resistivity Tomography (ERT) survey, bore-hole tests and geometrical survey conducted on the slope before its failure were used to identify the soil layers’ stratification including deep cracks, the properties of different soil layers, and geometrical parameters of the slope for the analysis. The results showed that it is vital to consider the existence of deep crack in soil slopes in analysing their instability induced by rainfalls.
Resumo:
The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.
Multi-level knowledge transfer in software development outsourcing projects : the agency theory view
Resumo:
In recent years, software development outsourcing has become even more complex. Outsourcing partner have begun‘re- outsourcing’ components of their projects to other outsourcing companies to minimize cost and gain efficiencies, creating a multi-level hierarchy of outsourcing. This research in progress paper presents preliminary findings of a study designed to understand knowledge transfer effectiveness of multi-level software development outsourcing projects. We conceptualize the SD-outsourcing entities using the Agency Theory. This study conceptualizes, operationalises and validates the concept of Knowledge Transfer as a three-phase multidimensional formative index of 1) Domain knowledge, 2) Communication behaviors, and 3) Clarity of requirements. Data analysis identified substantial, significant differences between the Principal and the Agent on two of the three constructs. Using Agency Theory, supported by preliminary findings, the paper also provides prescriptive guidelines of reducing the friction between the Principal and the Agent in multi-level software outsourcing.
Resumo:
The robust and diversely useful isoindoline nitroxide, 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (1; CTMIO), has previously been synthesised in low-to-moderate yields from phthalic anhydride (3). Recent interest in its biological potential as a potent antioxidant and in other areas has seen an increased demand for its production. Herein, three new synthetic routes to CTMIO are presented and their efficiencies assessed. Two routes, via the nitrile 9 and the formyl compound 11, derive from 5-bromo-1,1,3,3-tetramethylisoindoline (6). The third approach starts from the readily accessible starting material, 4-methylphthalic anhydride (12), and proceeds by a methylarene oxidation with potassium permanganate. The three new approaches yield CTMIO in comparable overall yields (16–18 %); however, the synthetic efficiency is most improved when employing the nitrile intermediate 9.
Resumo:
In this study, the nature of the coupling interactions between copper and uracil as well as its several derivatives has been systematically investigated employing the atoms in molecules (AIM) theory and energy decomposition analyses. The whole interaction process has been investigated through the analyses of the radial distribution functions of the Cu⋯X (X = S and O) contact on the basis of the ab initio molecular dynamics. No direct relationship between the adsorption strengths and inhibition efficiencies of the inhibitors has been observed. Additionally, the possibility of the methyl-substituted dithiouracil species to act as copper corrosion inhibitors has been tested.
Resumo:
Background WSUD implementation in the Gold Coast City Council area commenced more than a decade ago. As a result, Council is expected to be in possession of WSUD assets valued at over tens of million dollars. The Gold Coast City Council is responsible for the maintenance and long-term management of these WSUD assets. Any shortcoming in implementation of best WSUD practices can potentially result in substantial liabilities and ineffective expenditure for the Council in addition to reduced efficiencies and outcomes. This highlights the importance of periodic auditing of WSUD implementation. Project scope The overall study entailed the following tasks: * A state-of-the-art literature review of the conceptual hydraulic and water quality treatment principles, current state of knowledge in relation to industry standards, best practice and identification of knowledge gaps in relation to maintenance and management practices and potential barriers to the implementation of WSUD. * Council stakeholder interviews to understand current practical issues in relation to the implementation of WSUD and the process of WSUD application from development application approval to asset management. * Field auditing of selected WSUD systems for condition assessment and identification of possible strengths and weaknesses in implementation. * Review of the Land Development Guidelines in order to identify any gaps and to propose recommendations for improvement. Conclusions Given below is a consolidated summary of the findings of the study undertaken. State-of-the-art literature review Though the conceptual framework for WSUD implementation is well established, the underlying theoretical knowledge underpinning the treatment processes and maintenance regimes and life cycle costing are still not well understood. Essentially, these are the recurring themes in the literature, namely, the inadequate understanding of treatment processes and lack of guidance to ensure specificity of maintenance regimes and life cycle costing of WSUDs. The fundamental barriers to successful WSUD implementation are: * Lack of knowledge transfer – This essentially relates to the lack of appropriate dissemination of research outcomes and the common absence of protocols for knowledge transfer within the same organisation. * Cultural barriers – These relate to social and institutional factors, including institutional inertia and the lack of clear understanding of the benefits. * Fragmented responsibilities – This results from poor administrative integration within local councils in relation to WSUDs. * Technical barriers – These relate to lack of knowledge on operational and maintenance practices which is compounded by model limitations and the lack of long-term quantitative performance evaluation data. * Lack of engineering standards – Despite the availability of numerous guidelines which are non-enforceable and can sometimes be confusing, there is a need for stringent engineering standards. The knowledge gaps in relation to WSUDs are only closing very slowly. Some of the common knowledge gaps identified in recent publications have been recognised almost a decade ago. The key knowledge gaps identified in the published literature are: * lack of knowledge on operational and maintenance practices; * lack of reliable methodology for identifying life cycle issues including costs; * lack of technical knowledge on system performance; * lack of guidance on retrofitting in existing developments. Based on the review of barriers to WSUD implementation and current knowledge gaps, the following were identified as core areas for further investigation: * performance evaluation of WSUD devices to enhance model development and to assess their viability in the context of environmental, economic and social drivers; establishing realistic life cycle costs to strengthen maintenance and asset management practices; * development of guidelines specific to retrofitting in view of the unique challenges posed by existing urban precincts together with guidance to ensure site specificity; establishment of a process for knowledge translation for enhancing currently available best practice guidelines; * identification of drivers and overcoming of barriers in the areas of institutional fragmentation, knowledge gaps and awareness of WSUD practices. GCCC stakeholder interviews Fourteen staff members involved in WSUD systems management in the Gold Coast City Council, representing four Directorates were interviewed using a standard questionnaire. The primary issues identified by the stakeholders were: * standardisation of WSUD terminology; * clear protocols for safeguarding devices during the construction phase; * engagement of all council stakeholders in the WSUD process from the initial phase; * limitations in the Land Development Guidelines; * ensuring public safety through design; * system siting to avoid conflicts with environmental and public use of open space; * provision of adequate access for maintenance; * integration of social and ecosystem issues to ensure long-term viability of systems in relation to both, vandalism and visual recreation; * lack of performance monitoring and inadequacy of the maintenance budget; * lack of technical training for staff involved in WSUD design approvals and maintenance; incentives for developers for acting responsibly in stormwater management. Field auditing of WSUD systems A representative cross section of WSUD systems in the Gold Coast were audited in the field. The following strengths and weaknesses in WSUD implementation were noted: * The implementation of WSUD systems in the field is not consistent. * The concerns raised by the stakeholders during the interviews in relation to WSUD implementation was validated from the observations from the field auditing, particularly in relation to the following: * safeguarding of devices during the construction phase * public safety * accessibility for maintenance * lack of performance monitoring by Council to assess system performance * inadequate maintenance of existing systems to suit site specific requirements. * A treatment train approach is not being consistently adopted. * Most of the systems audited have satisfactorily catered for public safety. Accessibility for maintenance has been satisfactorily catered for in most of the systems that were audited. * Systems are being commissioned prior to construction activities being substantially completed. * The hydraulic design of most systems appears to be satisfactory. * The design intent of the systems is not always clear. Review of Land Development Guidelines The Land Development Guidelines (TDG) was extensively reviewed and the following primary issues were noted in relation to WSUD implementation: * the LDG appears to have been prepared primarily to provide guidance to developers. It is not clear to what extent the guidelines are applicable to Council staff involved in WSUD maintenance and management; * Section 13 is very voluminous and appears to be a compilation of a series of individual documents resulting in difficulties in locating specific information, a lack of integration and duplication of information; * the LDG has been developed with a primary focus on new urban precinct development and the retrofitting of systems in existing developments has not been specifically discussed; * WSUDs are discussed in two different sections in the LDG and it is not clear which section takes precedence as there are inconsistencies between the two sections; there is inconsistent terminology being used; * there is a need for consolidation of information provided in different sections in the LDG; * there are inconsistencies in the design criteria provided; * there is a need for regular updating of the LDG to ensure that the information provided encompasses the state-of-the-art; * there is limited guidance provided for the preparation of maintenance plans and life cycle costing to assist developers in asset handover and to assist Council staff in assessment. * Based on these observations, eleven recommendations have been provided which are discussed below. Additionally, the stakeholder provided the following specific comments during the interviews in relation to the LDG: * lack of flexibility to cover the different stages of the life cycle of the systems; * no differentiation in projects undertaken by developers and Council; * inadequate information with regards to safety issues such as maximum standing water depth, fencing and safety barriers and public access; * lack of detailed design criteria in relation to Crime Prevention through Environmental Design, safety, amenity, environment, surrounding uses and impacts on surroundings; * inadequate information regarding maintenance requirements specific to the assessment and compliance phases; * recommendations for plantings are based primarily on landscape requirements rather than pollutant uptake capability. Recommendations With regards to the Land Development Guidelines, the following specific recommendations are provided: 1. the relevant sections and their extent of applicability to Council should be clearly identified; 2. integration of the different subsections within Section 13 and re-formatting the document for easy reference; 3. the maintenance guidelines provided in Section 13 should be translated to a maintenance manual for guidance of Council staff; 4. should consider extending the Guidelines to specifically encompass retrofitting of WSUD systems to existing urban precincts; 5. Section 3 needs to be revised to be made consistent with Section 13, to ensure priority for WSUD practices in urban precincts and to move away from conventional stormwater drainage design such as kerb and channelling; 6. it would also be good to specify as to which Section takes predominance in relation to stormwater drainage. It is expected that Section 13 would take predominance over the other sections in the LDG; 7. terminology needs to be made consistent to avoid confusion among developers and Council staff. Water Sensitive Urban Design is the term commonly used in Australia for stormwater quality treatment, rather than Stormwater Quality Improvement Devices. This once again underlines the need for ensuring consistency between Section 3 and Section 13; 8. it would also be good if there is a glossary of commonly used terms in relation to WSUD for use by all stakeholders and which should also be reflected in the LDG; 9. consolidation of all WSUD information into one section should be considered together with appropriate indicators in other LDG Sections regarding the availability of WSUD information. Ensuring consistency in the information provided is implied; 10. Section 13 should be updated at regular intervals to ensure the incorporation of the latest in research outcomes and incorporating criteria and guidance based on the state-of-the-art knowledge. The updating could be undertaken, say, in five year cycles. This would help to overcome the current lack of knowledge transfer; 11. the Council should consider commissioning specialised studies to extend the current knowledge base in relation to WSUD maintenance and life cycle costing. Additionally, Recommendation 10 is also applicable in this instance. The following additional recommendations are made based on the state-of-the-art literature review, stakeholder interviews and field auditing of WSUD systems: 1. Performance monitoring of existing systems to assess improvements to water quality, identify modifications and enhancements to improve performance; 2. Appropriate and monitored maintenance during different phases of development of built assets over time is needed to investigate the most appropriate time/phase of development to commission the final WSUD asset. 3. Undertake focussed investigations in the areas of WSUD maintenance and asset management in order to establish more realistic life cycle costs of systems and maintenance schedules; 4. the engagement of all relevant Council stakeholders from the initial stage of concept planning through to asset handover, and ongoing monitoring. This close engagement of internal stakeholders will assist in building a greater understanding of responsibilities and contribute to overcoming constraints imposed by fragmented responsibilities; 5. the undertaking of a public education program to inform the community of the benefits and ecosystem functions of WSUD systems; 6. technical training to impart state-of-the-art knowledge to staff involved in the approval of designs and maintenance and management of WSUD projects; 7. during the construction phase, it is important to ensure that appropriate measures to safeguard WSUD devices are implemented; 8. risks associated with potential public access to open water zones should be minimised with the application of appropriate safety measures; 9. system siting should ensure that potential conflicts are avoided with respect to public and ecosystem needs; 10. integration of social and ecosystem issues to ensure long-term viability of systems; provide incentives to developers who are proactive and responsible in the area of stormwater management.
Resumo:
Database security techniques are available widely. Among those techniques, the encryption method is a well-certified and established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The performance of the database depends on how to encrypt the sensitive data, and an approach for searching and retrieval efficiencies that are implemented. In this paper we analyze the database queries and the data properties and propose a suitable mechanism to query the encrypted database. We proposed and analyzed the new database encryption algorithm using the Bloom Filter with the bucket index method. Finally, we demonstrated the superiority of the proposed algorithm through several experiments that should be useful for database encryption related research and application activities.
Resumo:
Work design operates as the system of arrangements and procedures for organizing work to achieve organizational goals. These systems are commonly established in periods of environmental and organizational stability and formulated to achieve efficiencies in resources, employee and team configuration. However, organizations charged with responding to disasters need to be prepared to respond to unexpected events on a large scale, and disaster response planning needs to accommodate a broad range of possible disasters. When the disaster state occurs, enactment of the specific organizational response is devolved to group or individual level managers. While this enactment presents a range of risks, it also provides a potential avenue for innovation. Employees ultimately are the foundation of change and innovation, as it is people who develop, respond, change and implement new ideas. This study analyzes motivational characteristics of work design at an Australian humanitarian organization encompassing normal operations and periods of disaster activation. The study will identify the paradox of dual work designs and the implications for organizational innovation.
Resumo:
During the current (1995-present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (> 3. m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995-recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60. m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant.
Resumo:
The encapsulation and release of bioactive molecules from polymeric vehicles represents the holy grail of drug and growth factor delivery therapies, whereby sustained and controlled release is crucial in eliciting a positive therapeutic effect. To this end, electrospraying is rapidly emerging as a popular technology for the production of polymeric particles containing bioactive molecules. Compared with traditional emulsion fabrication techniques, electrospraying has the potential to reduce denaturation of protein drugs and affords tighter regulation over particle size distribution and morphology. In this article, we review the importance of the electrospraying parameters that enable reproducible tailoring of the particles' physical and in vitro drug release characteristics, along with discussion of existing in vivo data. Controlled morphology and monodispersity of particles can be achieved with electrospraying, with high encapsulation efficiencies and without unfavorable denaturation of bioactive molecules throughout the process. Finally, the combination of electrospraying with electrospun scaffolds, with an emphasis on tissue regeneration is reviewed, depicting a technique in its relative infancy but holding great promise for the future of regenerative medicine.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development. However, the provision of broadband Internet services with the existing solutions to rural population, scattered over an extensive geographical area, remains both an economic and technical challenge. As a feasible solution, the Commonwealth Scientific and Industrial Research Organization (CSIRO) proposed a highly spectrally efficient, innovative and cost-effective fixed wireless broadband access technology, which uses analogue TV frequency spectrum and Multi-User MIMO (MUMIMO) technology with Orthogonal-Frequency-Division-Multiplexing (OFDM). MIMO systems have emerged as a promising solution for the increasing demand of higher data rates, better quality of service, and higher network capacity. However, the performance of MIMO systems can be significantly affected by different types of propagation environments e.g., indoor, outdoor urban, or outdoor rural and operating frequencies. For instance, large spectral efficiencies associated with MIMO systems, which assume a rich scattering environment in urban environments, may not be valid for all propagation environments, such as outdoor rural environments, due to the presence of less scatterer densities. Since this is the first time a MU-MIMO-OFDM fixed broadband wireless access solution is deployed in a rural environment, questions from both theoretical and practical standpoints arise; For example, what capacity gains are available for the proposed solution under realistic rural propagation conditions?. Currently, no comprehensive channel measurement and capacity analysis results are available for MU-MIMO-OFDM fixed broadband wireless access systems which employ large scale multiple antennas at the Access Point (AP) and analogue TV frequency spectrum in rural environments. Moreover, according to the literature, no deterministic MU-MIMO channel models exist that define rural wireless channels by accounting for terrain effects. This thesis fills the aforementioned knowledge gaps with channel measurements, channel modeling and comprehensive capacity analysis for MU-MIMO-OFDM fixed wireless broadband access systems in rural environments. For the first time, channel measurements were conducted in a rural farmland near Smithton, Tasmania using CSIRO's broadband wireless access solution. A novel deterministic MU-MIMO-OFDM channel model, which can be used for accurate performance prediction of rural MUMIMO channels with dominant Line-of-Sight (LoS) paths, was developed under this research. Results show that the proposed solution can achieve 43.7 bits/s/Hz at a Signal-to- Noise Ratio (SNR) of 20 dB in rural environments. Based on channel measurement results, this thesis verifies that the deterministic channel model accurately predicts channel capacity in rural environments with a Root Mean Square (RMS) error of 0.18 bits/s/Hz. Moreover, this study presents a comprehensive capacity analysis of rural MU-MIMOOFDM channels using experimental, simulated and theoretical models. Based on the validated deterministic model, further investigations on channel capacity and the eects of capacity variation, with different user distribution angles (θ) around the AP, were analysed. For instance, when SNR = 20dB, the capacity increases from 15.5 bits/s/Hz to 43.7 bits/s/Hz as θ increases from 10° to 360°. Strategies to mitigate these capacity degradation effects are also presented by employing a suitable user grouping method. Outcomes of this thesis have already been used by CSIRO scientists to determine optimum user distribution angles around the AP, and are of great significance for researchers and MU-MUMO-OFDM system developers to understand the advantages and potential capacity gains of MU-MIMO systems in rural environments. Also, results of this study are useful to further improve the performance of MU-MIMO-OFDM systems in rural environments. Ultimately, this knowledge contribution will be useful in delivering efficient, cost-effective high-speed wireless broadband systems that are tailor-made for rural environments, thus, improving the quality of life and economic prosperity of rural populations.
Resumo:
Grid connected photovoltaic (PV) inverters fall into three broad categories - central, string and module integrated converters (MICs). MICs offer many advantages in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author - cascaded dc-dc MICs and bypass dc-dc MICs - integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150 W 5 A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows zero voltage switching (ZVS) keeps losses under 1 W for bi-directional power flows up to 15 W between two adjacent 12 V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.
Resumo:
This paper presents two efficiency models for the regenerative dynamometer to be built at the University of Queensland. The models incorporate an accurate accounting of the losses associated with the regenerative dynamometer and the battery modelling technique used. In addition to the models the cycle and instantaneous efficiencies were defined for a regenerative system that requires a desired torque output. The simulation of the models allowed the instantaneous and cycle efficiencies to be examined. The results show the intended dynamometer machine has significant efficiency draw backs but incorporating field winding control, the efficiency can be improved.
Resumo:
The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.