512 resultados para Single stage converters
Resumo:
Background: Diagnosis of epithelial ovarian cancer (EOC) in young women has major implications including those to their reproductive potential. We evaluated depression, anxiety and body image in patients with stage I EOC treated with fertility sparing surgery (FSS) or radical surgery (RS). We also investigated fertility outcomes after FSS.----- Methods: A retrospective study was undertaken in which 62 patients completed questionnaires related to anxiety, depression, body image and fertility outcomes. Additional information on adjuvant therapy after FSS and RS and demographic details were abstracted from medical records. Both bi and multivariate regression models were used to assess the relationship between demographic, clinical and pathological results and scores for anxiety, depression and body image.----- Results: Thirty-nine patients underwent RS and the rest, FSS. The percentage of patients reporting elevated anxiety and depression (subscores ≥ 11) were 27 % and 5% respectively. The median (inter quartile range) score for body image scale (BIS) was 6 (3-15). None of the demographic or clinical factors examined showed significant association with anxiety and BIS with the exception of ‘time since diagnosis’. For depression, post-menopausal status was the only independent predictor. Among those 23 patients treated by FSS, 14 patients tried to conceive (7 successful), resulting in 7 live births, one termination of pregnancy and one miscarriage.----- Conclusion: This study shows that psychological issues are common in women treated for stage I EOC. Reproduction after FSS is feasible and lead to the birth of healthy babies in about half of patients who wished to have another child. Further prospective studies with standardised instruments are required.
Resumo:
Employing multilevel inverters is a proper solution to reduce harmonic content of output voltage and electromagnetic interference in high power electronic applications. In this paper, a new pulse width modulation method for multilevel inverters is proposed in which power devices’ on-off switching times have been considered. This method can be surveyed in order to analyse the effect of switching time on harmonic contents of output voltage in high frequency applications when a switching time is not negligible compared to a switching cycle. Fast Fourier transform calculation and analysis of output voltage waveforms and harmonic contents with regard to switching time variation are presented in this paper for a single phase (3, 5)-level inverters used in high voltage and high frequency converters. Mathematical analysis and MATLAB simulation results have been carried out to validate the proposed method.
Resumo:
This paper shows how the power quality can be improved in a microgrid that is supplying a nonlinear and unbalanced load. The microgrid contains a hybrid combination of inertial and converter interfaced distributed generation units where a decentralized power sharing algorithm is used to control its power management. One of the distributed generators in the microgrid is used as a power quality compensator for the unbalanced and harmonic load. The current reference generation for power quality improvement takes into account the active and reactive power to be supplied by the micro source which is connected to the compensator. Depending on the power requirement of the nonlinear load, the proposed control scheme can change modes of operation without any external communication interfaces. The compensator can operate in two modes depending on the entire power demand of the unbalanced nonlinear load. The proposed control scheme can even compensate system unbalance caused by the single-phase micro sources and load changes. The efficacy of the proposed power quality improvement control and method in such a microgrid is validated through extensive simulation studies using PSCAD/EMTDC software with detailed dynamic models of the micro sources and power electronic converters
Resumo:
Multilevel inverters provide an attractive solution for power electronics when both reduced harmonic contents and high voltages are required. In this paper, a novel predictive current control technique is proposed for a three-phase multilevel inverter, which controls the capacitors voltages and load currents with low switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase three-level inverter with a pure inductive load has been implemented to track reference currents using analogue circuits and programmable logic device.
Resumo:
This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.
Resumo:
This paper presents an object tracking system that utilises a hybrid multi-layer motion segmentation and optical flow algorithm. While many tracking systems seek to combine multiple modalities such as motion and depth or multiple inputs within a fusion system to improve tracking robustness, current systems have avoided the combination of motion and optical flow. This combination allows the use of multiple modes within the object detection stage. Consequently, different categories of objects, within motion or stationary, can be effectively detected utilising either optical flow, static foreground or active foreground information. The proposed system is evaluated using the ETISEO database and evaluation metrics and compared to a baseline system utilising a single mode foreground segmentation technique. Results demonstrate a significant improvement in tracking results can be made through the incorporation of the additional motion information.
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Resumo:
Delirium is a disorder of acute onset with fluctuating symptoms and is characterized by inattention, disorganized thinking, and altered levels of consciousness. The risk for delirium is greatest in individuals with dementia, and the incidence of both is increasing worldwide because of the aging of our population. Although several clinical trials have tested interventions for delirium prevention in individuals without dementia, little is known about the mechanisms for the prevention of delirium in early-stage Alzheimer’s disease (AD). The purpose of this article is to explore ways of preventing delirium and slowing the rate of cognitive decline in early-stage AD by enhancing cognitive reserve. An agenda for future research on interventions to prevent delirium in individuals with early-stage AD is also presented.