79 resultados para Sigmoidal neurons
Resumo:
Little is known about the neuronal changes that occur within the lateral amygdala (LA) following fear extinction. In fear extinction, the repeated presentation of a conditioned stimulus (CS), in the absence of a previously paired aversive unconditioned stimulus (US), reduces fear elicited by the CS. Fear extinction is an active learning process that leads to the formation of a consolidated extinction memory, however it is fragile and prone to spontaneous recovery and renewal under environmental changes such as context. Understanding the neural mechanisms underlying fear extinction is of great clinical relevance, as psychological treatments of several anxiety disorders rely largely on extinction-based procedures and relapse is major clinical problem. This study investigated plasticity in the LA following fear memory reactivation in rats with and without extinction training. Phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for fear learning and its extinction, was used as a marker for neuronal plasticity. Rats (N = 11) underwent a Pavlovian auditory fear conditioning and extinction paradigm, and later received a single conditioned stimulus presentation to reactivate the fear memory. Results showed more pMAPK+ expressing neurons in the LA following extinction-reactivation compared to control rats, with the largest number of pMAPK+ neurons counted in the ventral LA, especially including the ventro-lateral subdivision (LAvl). These findings indicate that LA subdivision specific plasticity occurs to the conditioned fear memory in the LAvl following extinction-reactivation. These findings provide important insight into the organisation of fear memories in the LA, and pave the way for future research in the memory mechanisms of fear extinction and its pathophysiology.
Resumo:
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Resumo:
Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12-weeks) binge-ethanol intake, compared to short-term (4-weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin- and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency in BLA principal neurons from long-term ethanol consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.
Resumo:
Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.