164 resultados para Sensor Data Fusion Applicazioni
Resumo:
For industrial wireless sensor networks, maintaining the routing path for a high packet delivery ratio is one of the key objectives in network operations. It is important to both provide the high data delivery rate at the sink node and guarantee a timely delivery of the data packet at the sink node. Most proactive routing protocols for sensor networks are based on simple periodic updates to distribute the routing information. A faulty link causes packet loss and retransmission at the source until periodic route update packets are issued and the link has been identified as broken. We propose a new proactive route maintenance process where periodic update is backed-up with a secondary layer of local updates repeating with shorter periods for timely discovery of broken links. Proposed route maintenance scheme improves reliability of the network by decreasing the packet loss due to delayed identification of broken links. We show by simulation that proposed mechanism behaves better than the existing popular routing protocols (AODV, AOMDV and DSDV) in terms of end-to-end delay, routing overhead, packet reception ratio.
Resumo:
This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.
Resumo:
This paper proposes an approach to obtain a localisation that is robust to smoke by exploiting multiple sensing modalities: visual and infrared (IR) cameras. This localisation is based on a state-of-the-art visual SLAM algorithm. First, we show that a reasonably accurate localisation can be obtained in the presence of smoke by using only an IR camera, a sensor that is hardly affected by smoke, contrary to a visual camera (operating in the visible spectrum). Second, we demonstrate that improved results can be obtained by combining the information from the two sensor modalities (visual and IR cameras). Third, we show that by detecting the impact of smoke on the visual images using a data quality metric, we can anticipate and mitigate the degradation in performance of the localisation by discarding the most affected data. The experimental validation presents multiple trajectories estimated by the various methods considered, all thoroughly compared to an accurate dGPS/INS reference.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
Surveillance and tracking systems typically use a single colour modality for their input. These systems work well in controlled conditions but often fail with low lighting, shadowing, smoke, dust, unstable backgrounds or when the foreground object is of similar colouring to the background. With advances in technology and manufacturing techniques, sensors that allow us to see into the thermal infrared spectrum are becoming more affordable. By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using visible light only for surveillance and tracking. Thermal images are not affected by lighting or shadowing and are not overtly affected by smoke, dust or unstable backgrounds. We propose and evaluate three approaches for fusing visual and thermal images for person tracking. We also propose a modified condensation filter to track and aid in the fusion of the modalities. We compare the proposed fusion schemes with using the visual and thermal domains on their own, and demonstrate that significant improvements can be achieved by using multiple modalities.
Resumo:
Surveillance systems such as object tracking and abandoned object detection systems typically rely on a single modality of colour video for their input. These systems work well in controlled conditions but often fail when low lighting, shadowing, smoke, dust or unstable backgrounds are present, or when the objects of interest are a similar colour to the background. Thermal images are not affected by lighting changes or shadowing, and are not overtly affected by smoke, dust or unstable backgrounds. However, thermal images lack colour information which makes distinguishing between different people or objects of interest within the same scene difficult. ----- By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using either modality individually. We evaluate four approaches for fusing visual and thermal images for use in a person tracking system (two early fusion methods, one mid fusion and one late fusion method), in order to determine the most appropriate method for fusing multiple modalities. We also evaluate two of these approaches for use in abandoned object detection, and propose an abandoned object detection routine that utilises multiple modalities. To aid in the tracking and fusion of the modalities we propose a modified condensation filter that can dynamically change the particle count and features used according to the needs of the system. ----- We compare tracking and abandoned object detection performance for the proposed fusion schemes and the visual and thermal domains on their own. Testing is conducted using the OTCBVS database to evaluate object tracking, and data captured in-house to evaluate the abandoned object detection. Our results show that significant improvement can be achieved, and that a middle fusion scheme is most effective.