196 resultados para Seed Plant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The renovation of biomass waste in the form of Mahogany seed waste into bio-fuel as well as activated carbon by fixed bed pyrolysis reactor has been taken into consideration in this study. The mahogany seed in particle form is pyrolyzed in an enormously heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 4000C to 6000C using a external heater in which rice husk and charcoal are used as the heater biomass fuel. Reactor bed temperature, running time and feed particle size have been varied to get the optimum operating conditions of the system. The parameters are found to influence the product yields to a large extent. A maximum liquid and char yield are 49 wt. % and 35 wt. % respectively obtained at a reactor bed temperature 5000C when the running time is 90 minutes. Acquired pyrolyzed oil at these optimal process conditions were analyzed for some of their properties as an alternative fuel. The oil possesses comparable flame temperature, favorable flash point and reasonable viscosity along with somewhat higher density. The kinematic viscosity of the derived fuel is 3.8 cSt and density is 1525 kg/m3. The higher calorific value is found 32.4 MJ/kg which is significantly higher than other biomass derived fuel. Moderate adsorption capacity of the prepared activated carbon in case of methyl blue & tea water was also revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African lovegrass (Eragrostis curvula) is a C4 perennial grass, native to southern Africa, that was accidentally introduced into Australia in the late 1900s as a contaminant of pasture seed. Its utility for pasture improvement and soil conservation was explored because of its recognised ability to grow in areas of low rainfall and on nutrient-poor sandy loams. Several different agronomic types have now been intentionally introduced across Australia. African lovegrass is now found in all Australian states and territories. It is a declared weed in 33 council areas of New South Wales, a declared pest plant in the ACT and Tasmania and a Regionally Prohibited Weed in 5 out of 11 regions in Victoria. Victoria has also placed it in the very serious threat category (Carr et al. 1992). In Queensland, it has yet to be declared except under local law in the Eidsvold shire (Leigh and Walton, in press).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to determine and discuss on the plant and machinery valuation syllabus for higher learning education in Malaysia to ensure the practicality of the subject in the real market. There have been limited studies in plant and machinery area, either by scholars or practitioners. Most papers highlighted the methodologies but limited papers discussed on the plant and machinery valuation education. This paper will determine inputs for plant and machinery valuation guidance focussing on the syllabus set up and references for valuers interested in this area of expertise. A qualitative approach via content analysis is conducted to compare international and Malaysian plant and machinery valuation syllabus and suggest improvements for Malaysian syllabus. It is found that there are few higher education institutions in the world that provide plant and machinery valuation courses as part of their property studies syllabus. Further investigation revealed that on the job training is the preferable method for plant and machinery valuation education and based on the valuers experience. The significance of this paper is to increase the level of understanding of plant and machinery valuation criteria and provide suggestions to Malaysian stakeholders with the relevant elements in plant and machinery valuation education syllabus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of plant-made therapeutics in South Africa is well established in the form of exploitation of the country's considerable natural plant diversity, both in the use of native plants in traditional herbal medicines over many centuries, and in the more modern extraction of pharmacologically-active compounds from plants, including those known to traditional healers. In recent years, this has been added to by the use of plants for the stable or transient expression of pharmaceutically-important compounds, largely protein-based biologics and vaccines. South Africa has a well-developed plant biotechnology community, as well as a comprehensive legislative framework for the regulation of the exploitation of local botanic resources, and of genetically-modified organisms. The review explores the investigation of both conventional and recombinant plants for pharmaceutical use in South Africa, as well as describing the relevant legislative and regulatory frameworks. Potential opportunities for national projects, as well as factors limiting biopharming in South Africa are discussed. © 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents. © 2010 The Author. Journal compilation © 2010 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-throughput method of isolating and cloning geminivirus genomes from dried plant material, by combining an Extract-n-Amp™-based DNA isolation technique with rolling circle amplification (RCA) of viral DNA, is presented. Using this method an attempt was made to isolate and clone full geminivirus genomes/genome components from 102 plant samples, including dried leaves stored at room temperature for between 6 months and 10 years, with an average hands-on-time to RCA-ready DNA of 15 min per 20 samples. While storage of dried leaves for up to 6 months did not appreciably decrease cloning success rates relative to those achieved with fresh samples, efficiency of the method decreased with increasing storage time. However, it was still possible to clone virus genomes from 47% of 10-year-old samples. To illustrate the utility of this simple method for high-throughput geminivirus diversity studies, six Maize streak virus genomes, an Abutilon mosaic virus DNA-B component and the DNA-A component of a previously unidentified New Word begomovirus species were fully sequenced. Genomic clones of the 69 other viruses were verified as such by end sequencing. This method should be extremely useful for the study of any circular DNA plant viruses with genome component lengths smaller than the maximum size amplifiable by RCA. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The native cottontail rabbit papillomavirus (CRPV) L1 capsid protein gene was expressed transgenically via Agrobacterium tumefaciens transformation and transiently via a tobacco mosaic virus (TMV) vector in Nicotiana spp. L1 protein was detected in concentrated plant extracts at concentrations up to 1.0 mg/kg in transgenic plants and up to 0.4 mg/kg in TMV-infected plants. The protein did not detectably assemble into viruslike particles; however, immunoelectron microscopy showed presumptive pentamer aggregates, and extracted protein reacted with conformation-specific and neutralizing monoclonal antibodies. Rabbits were injected with concentrated protein extract with Freund's incomplete adjuvant. All sera reacted with baculovirus-produced CRPV L1; however, they did not detectably neutralize infectivity in an in vitro assay. Vaccinated rabbits were, however, protected against wart development on subsequent challenge with live virus. This is the first evidence that a plant-derived papillomavirus vaccine is protective in an animal model and is a proof of concept for human papillomavirus vaccines produced in plants. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This relatively new biennial meeting - the first was in Prague in 2005 - was chaired by Julian Ma (Guy's Hospital, London, UK), with Mario Pezzotti (University of Verona, Italy) as local organizer, and attracted approximately 180 delegates from 25 countries. The theme was 'Plant Expression Systems for Recombinant Pharmacologics': there were 46 talks gathered into two plenaries, 12 themed sessions and 72 posters. Topics covered included publicly funded and commercial developments, innovation, regulation and commercialization, competition with conventional technology, manufacture and new products. © 2009 Expert Reviews Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with applying a particle-based approach to simulate the micro-level cellular structural changes of plant cells during drying. The objective of the investigation was to relate the micro-level structural properties such as cell area, diameter and perimeter to the change of moisture content of the cell. Model assumes a simplified cell which consists of two basic components, cell wall and cell fluid. The cell fluid is assumed to be a Newtonian fluid with higher viscosity compared to water and cell wall is assumed to be a visco-elastic solid boundary located around the cell fluid. Cell fluid is modelled with Smoothed Particle Hydrodynamics (SPH) technique and for the cell wall; a Discrete Element Method (DEM) is used. The developed model is two-dimensional, but accounts for three-dimensional physical properties of real plant cells. Drying phenomena is simulated as fluid mass reductions and the model is used to predict the above mentioned structural properties as a function of cell fluid mass. Model predictions are found to be in fairly good agreement with experimental data in literature and the particle-based approach is demonstrated to be suitable for numerical studies of drying related structural deformations. Also a sensitivity analysis is included to demonstrate the influence of key model parameters to model predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2007, the Queensland University of Technology (QUT) received funding from the Australian Government through the NCRIS program and from the then Queensland Government Department of State Development to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugar cane bagasse. This facility is being constructed adjacent to the Racecourse Sugar Mill in Mackay and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). The MRBPP will be capable of processing biomass through a pressurised pretreatment reactor and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products will also be produced at a pilot scale for product development and testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE Mackay Renewable Biocommodities Pilot Plant is a pilot scale facility owned and operated by QUT for research and demonstration of the conversion of lignocellulosic biomass such as sugarcane bagasse into biofuels. The pilot plant accommodates unique state-of-the-art equipment to process a wide range of feedstocks and is strategically located on the site of the Mackay Sugar Ltd Racecourse Mill. Major facilities include a biomass handling system, pre-treatment reactor, saccharification reactor, fermentors, distillation column and bioseparations equipment. This paper provides an update on the design, construction, commissioning and start-up of the facility. In addition, the paper provides results from preliminary facility trials on the pre-treatment of sugarcane bagasse for cellulosic ethanol production.